Faculty Opinions recommendation of Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: embryonic cell division depends on CPG-1 and CPG-2.

Author(s):  
Andrew Chisholm
Genetics ◽  
1995 ◽  
Vol 141 (3) ◽  
pp. 989-1006 ◽  
Author(s):  
E M Hedgecock ◽  
R K Herman

Abstract A ncl-1 mutation results in enlarged nucleoli, which can be detected in nearly all cells of living animals by Nomarski microscopy. Spontaneous mitotic loss of a ncl-1(+)-containing free duplication in an otherwise homozygous ncl-1 mutant animal results in mosaicism for ncl-1 expression, and the patterns of mosaicism lead us to conclude that ncl-1 acts cell autonomously. The probability of mitotic loss of the duplication sDp3 is approximately constant over many cell divisions. About 60% of the losses of sDp3 at the first embryonic cell division involve nondisjunction. Frequencies of mitotic loss of different ncl-1(+)-bearing free duplications varied over a 200-fold range. The frequencies of mitotic loss were enhanced by a chromosomal him-10 mutation. We have used ncl-1 as a cell autonomous marker in the mosaic analysis of dpy-1 and lin-37. The focus of action of dpy-1 is in hypodermis. A mutation in lin-37 combined with a mutation in another gene results in a synthetic multivulva phenotype. We show that lin-37 acts cell nonautonomously and propose that it plays a role, along with the previously studied gene lin-15, in the generation of an intercellular signal by hyp7 that represses vulval development.


Glycobiology ◽  
2011 ◽  
Vol 21 (6) ◽  
pp. 834-848 ◽  
Author(s):  
K. H. Nomura ◽  
D. Murata ◽  
Y. Hayashi ◽  
K. Dejima ◽  
S. Mizuguchi ◽  
...  

Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1303-1321
Author(s):  
Kevin F O'Connell ◽  
Charles M Leys ◽  
John G White

Abstract A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord—resulting in sterile, uncoordinated animals—while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 237-252
Author(s):  
Asako Sugimoto ◽  
Ayumi Kusano ◽  
Rebecca R Hozak ◽  
W Brent Derry ◽  
Jiangwen Zhu ◽  
...  

Abstract To identify genes involved in programmed cell death (PCD) in Caenorhabditis elegans, we screened a comprehensive set of chromosomal deficiencies for alterations in the pattern of PCD throughout embryonic development. From a set of 58 deficiencies, which collectively remove ∼74% of the genome, four distinct classes were identified. In class I (20 deficiencies), no significant deviation from wild type in the temporal pattern of cell corpses was observed, indicating that much of the genome does not contain zygotic genes that perform conspicuous roles in embryonic PCD. The class II deficiencies (16 deficiencies defining at least 11 distinct genomic regions) led to no or fewer-than-normal cell corpses. Some of these cause premature cell division arrest, probably explaining the diminution in cell corpse number; however, others have little effect on cell proliferation, indicating that the reduced cell corpse number is not a direct result of premature embryonic arrest. In class III (18 deficiencies defining at least 16 unique regions), an excess of cell corpses was observed. The developmental stage at which the extra corpses were observed varied among the class III deficiencies, suggesting the existence of genes that perform temporal-specific functions in PCD. The four deficiencies in class IV (defining at least three unique regions), showed unusually large corpses that were, in some cases, attributable to extremely premature arrest in cell division without a concomitant block in PCD. Deficiencies in this last class suggest that the cell death program does not require normal embryonic cell proliferation to be activated and suggest that while some genes required for cell division might also be required for cell death, others are not. Most of the regions identified by these deficiencies do not contain previously identified zygotic cell death genes. There are, therefore, a substantial number of as yet unidentified genes required for normal PCD in C. elegans.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1623-1628
Author(s):  
Hediye Nese Cinar ◽  
Keri L Richards ◽  
Kavita S Oommen ◽  
Anna P Newman

Abstract We isolated egl-13 mutants in which the cells of the Caenorhabditis elegans uterus initially appeared to develop normally but then underwent an extra round of cell division. The data suggest that egl-13 is required for maintenance of the cell fate.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 131-141
Author(s):  
Laurent Molin ◽  
Heinke Schnabel ◽  
Titus Kaletta ◽  
Richard Feichtinger ◽  
Ian A Hope ◽  
...  

Abstract In the early Caenorhabditis elegans embryo five somatic founder cells are born during the first cleavages. The first of these founder cells, named AB, gives rise to 389 of the 558 nuclei present in the hatching larva. Very few genes directly involved in the specification of the AB lineage have been identified so far. Here we describe a screen of a large collection of maternal-effect embryonic lethal mutations for their effect on the early expression of a pes-1::lacZ fusion gene. This fusion gene is expressed in a characteristic pattern in 14 of the 32 AB descendants present shortly after the initiation of gastrulation. Of the 37 mutations in 36 genes suspected to be required specifically during development, 12 alter the expression of the pes-1::lacZ marker construct. The gene expression pattern alterations are of four types: reduction of expression, variable expression, ectopic expression in addition to the normal pattern, and reduction of the normal pattern together with ectopic expression. We estimate that ∼100 maternal functions are required to establish the pes-1 expression pattern in the early embryo.


2005 ◽  
Vol 171 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Anjon Audhya ◽  
Francie Hyndman ◽  
Ian X. McLeod ◽  
Amy S. Maddox ◽  
John R. Yates ◽  
...  

Cytokinesis completes cell division and partitions the contents of one cell to the two daughter cells. Here we characterize CAR-1, a predicted RNA binding protein that is implicated in cytokinesis. CAR-1 localizes to germline-specific RNA-containing particles and copurifies with the essential RNA helicase, CGH-1, in an RNA-dependent fashion. The atypical Sm domain of CAR-1, which directly binds RNA, is dispensable for CAR-1 localization, but is critical for its function. Inhibition of CAR-1 by RNA-mediated depletion or mutation results in a specific defect in embryonic cytokinesis. This cytokinesis failure likely results from an anaphase spindle defect in which interzonal microtubule bundles that recruit Aurora B kinase and the kinesin, ZEN-4, fail to form between the separating chromosomes. Depletion of CGH-1 results in sterility, but partially depleted worms produce embryos that exhibit the CAR-1–depletion phenotype. Cumulatively, our results suggest that CAR-1 functions with CGH-1 to regulate a specific set of maternally loaded RNAs that is required for anaphase spindle structure and cytokinesis.


2012 ◽  
Vol 23 (16) ◽  
pp. 3111-3121 ◽  
Author(s):  
Virginie Hachet ◽  
Coralie Busso ◽  
Mika Toya ◽  
Asako Sugimoto ◽  
Peter Askjaer ◽  
...  

Regulation of mitosis in time and space is critical for proper cell division. We conducted an RNA interference–based modifier screen to identify novel regulators of mitosis in Caenorhabditis elegans embryos. Of particular interest, this screen revealed that the Nup205 nucleoporin NPP-3 can negatively modulate the timing of mitotic onset. Furthermore, we discovered that NPP-3 and nucleoporins that are associated with it are lost from the nuclear envelope (NE) in the vicinity of centrosomes at the onset of mitosis. We demonstrate that centrosomes are both necessary and sufficient for NPP-3 local loss, which also requires the activity of the Aurora-A kinase AIR-1. Our findings taken together support a model in which centrosomes and AIR-1 promote timely onset of mitosis by locally removing NPP-3 and associated nucleoporins from the NE.


Genetics ◽  
1980 ◽  
Vol 96 (2) ◽  
pp. 435-454 ◽  
Author(s):  
H Robert Horvitz ◽  
John E Sulston

ABSTRACT Twenty-four mutants that alter the normally invariant post-embryonic cell lineages of the nematode Caenorhabditis elegans have been isolated and genetically characterized. In some of these mutants, cell divisions fail that occur in wild-type animals; in other mutants, cells divide that do not normally do so. The mutants differ in the specificities of their defects, so that it is possible to identify mutations that affect some cell lineages but not others. These mutants define 14 complementation groups, which have been mapped. The abnormal phenotype of most of the cell-lineage mutants results from a single recessive mutation; however, the excessive cell divisions characteristic of one strain, CB1322, require the presence of two unlinked recessive mutations. All 24 cell-lineage mutants display incomplete penetrance and/or variable expressivity. Three of the mutants are suppressed by pleiotropic suppressors believed to be specific for null alleles, suggesting that their phenotypes result from the complete absence of gene activity.


Sign in / Sign up

Export Citation Format

Share Document