Faculty Opinions recommendation of Mutation accumulation in the intestine and colon of mice deficient in two intracellular glutathione peroxidases.

Author(s):  
B Bhaskar Gollapudi
2006 ◽  
Vol 66 (20) ◽  
pp. 9845-9851 ◽  
Author(s):  
Dong-Hyun Lee ◽  
R. Steven Esworthy ◽  
Christy Chu ◽  
Gerd P. Pfeifer ◽  
Fong-Fong Chu

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
R. Steven Esworthy ◽  
David D. Smith ◽  
Fong-Fong Chu

Genetic background affects susceptibility to ileocolitis in mice deficient in two intracellular glutathione peroxidases, GPx1 and GPx2. The C57BL/6 (B6) GPx1/2 double-knockout (DKO) mice have mild ileocolitis, and 129S1/Sv (129) DKO mice have severe inflammation. We used diet to modulate ileocolitis; a casein-based defined diet with AIN76A micronutrients (AIN) attenuates inflammation compared to conventional LabDiets. Because luminal microbiota induce DKO ileocolitis, we assessed bacterial composition with automated ribosomal intergenic-spacer analysis (ARISA) on cecal DNA. We found that mouse strain had the strongest impact on the composition of microbiota than diet andGPxgenotypes. In comparing AIN and LabDiet, DKO mice were more resistant to change than the non-DKO or WT mice. However, supplementing yeast and inulin to AIN diet greatly altered microflora profiles in the DKO mice. From 129 DKO strictly, we found overgrowth ofEscherichia coli. We conclude that genetic background predisposes mice to colonization of potentially pathogenicE. coli.


2019 ◽  
Vol 24 (40) ◽  
pp. 4825-4837 ◽  
Author(s):  
Gustavo Alberto de la Riva ◽  
Francisco Javier López Mendoza ◽  
Guillermin Agüero-Chapin

Background: Oxygen is involved in a variety of physiological reactions in aerobic organisms, such as those produced in the electron transport chain, hydroxylation, and oxygenation. Reactive oxygen species (ROS) are naturally formed as byproducts from these previously reactions involving the O2 molecule; they are made up of superoxide anion (O2−), hydroxyl radical (HO−), hydrogen peroxide (H2O2), nitric oxide (NO), peroxyl (ROO−), and reactive aldehyde (ROCH). Under certain environmental stress conditions, ROS are accumulated causing cellular damage but also triggering the overexpression of several enzyme classes such as superoxide dismutases (SOD), catalases (CAT) and glutathione peroxidases (GPx), which represent an important intrinsic antioxidant defence line. Liver is a key organ in vertebrates including farm animals and human. The oxidative stress plays an important role in systemic malfunctions including hepatic, renal and immunological, disorders. Methods: This review presents a brief update about the relationship of oxidative stress with hepatic, renal and immunological malfunctions in stressed organisms. Cellular and exogenous hepatoprotective compounds share also the ability to scavenge ROS acting as antioxidants and in many cases as stimulators of immune response in stressed organisms. We present the effect of some hepatoprotectors on the hepatic, renal and immunological function in stressed mice by the jointed evaluation of biological and oxidative stress markers. Conclusion: Hepatoprotective effect of several exogenous compounds is very associated with their antioxidant capacity. This fact is relevant for keeping oxidant/antioxidant balance in the respective organs, but also for maintaining the physiological status of the whole organism.


Sign in / Sign up

Export Citation Format

Share Document