Faculty Opinions recommendation of Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis.

Author(s):  
Jörg Distler ◽  
Christian Beyer
2005 ◽  
Vol 201 (6) ◽  
pp. 925-935 ◽  
Author(s):  
Amir Abdollahi ◽  
Minglun Li ◽  
Gong Ping ◽  
Christian Plathow ◽  
Sophie Domhan ◽  
...  

Pulmonary fibrosis is the consequence of a variety of diseases with no satisfying treatment option. Therapy-induced fibrosis also limits the efficacy of chemotherapy and radiotherapy in numerous cancers. Here, we studied the potential of platelet-derived growth factor (PDGF) receptor tyrosine kinase inhibitors (RTKIs) to attenuate radiation-induced pulmonary fibrosis. Thoraces of C57BL/6 mice were irradiated (20 Gy), and mice were treated with three distinct PDGF RTKIs (SU9518, SU11657, or Imatinib). Irradiation was found to induce severe lung fibrosis resulting in dramatically reduced mouse survival. Treatment with PDGF RTKIs markedly attenuated the development of pulmonary fibrosis in excellent correlation with clinical, histological, and computed tomography results. Importantly, RTKIs also prolonged the life span of irradiated mice. We found that radiation up-regulated expression of PDGF (A–D) isoforms leading to phosphorylation of PDGF receptor, which was strongly inhibited by RTKIs. Our findings suggest a pivotal role of PDGF signaling in the pathogenesis of pulmonary fibrosis and indicate that inhibition of fibrogenesis, rather than inflammation, is critical to antifibrotic treatment. This study points the way to a potential new approach for treating idiopathic or therapy-related forms of lung fibrosis.


2020 ◽  
Vol 9 (7) ◽  
pp. 2242
Author(s):  
Ye Liu ◽  
Kousuke Noda ◽  
Miyuki Murata ◽  
Di Wu ◽  
Atsuhiro Kanda ◽  
...  

Neovascular age related macular degeneration (nAMD) leads to severe vision loss worldwide and is characterized by the formation of choroidal neovascularization (CNV) and fibrosis. In the current study, we aimed to investigate the effect of blockade for platelet derived growth factor receptor-β (PDGFR-β) on the formation of choroidal neovascularization and fibrosis in the laser-induced CNV model in mice. Firstly, the presence of PDGFR-β in CNV lesions were confirmed. Intravitreal injection of PDGFR-β neutralizing antibody significantly reduced the size of CNV and subretinal fibrosis. Additionally, subretinal hyperreflective material (SHRM), a landmark feature on OCT as a risk factor for subretinal fibrosis formation in nAMD patients was also suppressed by PDGFR-β blockade. Furthermore, pericytes were abundantly recruited to the CNV lesions during CNV formation, however, blockade of PDGFR-β significantly reduced pericyte recruitment. In addition, PDGF-BB stimulation increased the migration of the rat retinal pericyte cell line, R-rPCT1, which was abrogated by the neutralization of PDGFR-β. These results indicate that blockade of PDGFR-β attenuates laser-induced CNV and fibrosis through the inhibition of pericyte migration.


2012 ◽  
Vol 7 ◽  
Author(s):  
Sabina A. Antoniu

Idiopathic pulmonary fibrosis is a rare, life threatening disease characterized by an anarchic fibrogenesis, limited survival and few therapeutic options. Its pathogenesis is complex and involves the interaction among various pathways driven by proinflammatory/profibrogenetic mediators such as platelet -derived growth factor, vascular endothelial growth factor or basic fibroblast growth factor. Given their prominent pathogenic roles in this disease such growth factor might be suitable therapeutic targets.In fact, the existing preclinical and clinical data demonstrated that their therapeutic inhibition results in a delayed progression of the pulmonary fibrosis and in the improvement of the disease outcome. BIBF 1120 is a potent triple blocker of the receptors of these growth factors which is currently evaluated as a potential therapy in the idiopathic pulmonary fibrosis. This review discusses the existing data supporting its potential use in this disease.


Sign in / Sign up

Export Citation Format

Share Document