Faculty Opinions recommendation of Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas.

Author(s):  
Gustavo Baldassarre
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhiyong Wang ◽  
Yusuke Goto ◽  
Michael M. Allevato ◽  
Victoria H. Wu ◽  
Robert Saddawi-Konefka ◽  
...  

AbstractImmune checkpoint blockade (ICB) therapy has revolutionized head and neck squamous cell carcinoma (HNSCC) treatment, but <20% of patients achieve durable responses. Persistent activation of the PI3K/AKT/mTOR signaling circuitry represents a key oncogenic driver in HNSCC; however, the potential immunosuppressive effects of PI3K/AKT/mTOR inhibitors may limit the benefit of their combination with ICB. Here we employ an unbiased kinome-wide siRNA screen to reveal that HER3, is essential for the proliferation of most HNSCC cells that do not harbor PIK3CA mutations. Indeed, we find that persistent tyrosine phosphorylation of HER3 and PI3K recruitment underlies aberrant PI3K/AKT/mTOR signaling in PIK3CA wild type HNSCCs. Remarkably, antibody-mediated HER3 blockade exerts a potent anti-tumor effect by suppressing HER3-PI3K-AKT-mTOR oncogenic signaling and concomitantly reversing the immune suppressive tumor microenvironment. Ultimately, we show that HER3 inhibition and PD-1 blockade may provide a multimodal precision immunotherapeutic approach for PIK3CA wild type HNSCC, aimed at achieving durable cancer remission.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shuajia Zhang ◽  
Jiahui Han ◽  
Jing Fu

Head and neck squamous cell carcinoma (HNSCC) refers to an epithelial malignant tumor that originates in the head and neck, and over 600,000 new cases are reported every year, However, the overall prognosis is still poor due to local recurrence and distant metastasis after surgery. The circ_0032822 has been reported upregulated in human oral squamous cell carcinoma; however, the detailed function or mechanism remains unknown. In this study, we confirmed the upregulation of circ_0032822 in HNSCC tumor tissues. Functionally, the overexpression of circ_0032822 significantly promoted the proliferation of HNSCC cell lines along with the S phase arrest and reduced apoptosis, while downregulation of circ_0032822 has the opposite effect in vitro. Mechanistic analysis showed that circ_0032822 acted as a competing endogenous RNA of miR-141 to diminish the repressive effect of miR-141 on its target E2F3. In conclusion, we demonstrated that circ_0032822 functions as a tumor oncogene in HNSCC and that its function is regulated via the miR-141/E2F3 axis.


2020 ◽  
Vol 10 ◽  
Author(s):  
Chuan Ma ◽  
Tingting Shi ◽  
Zhuli Qu ◽  
Aobo Zhang ◽  
Zuping Wu ◽  
...  

Circular RNAs (circRNAs) contain microRNA (miRNA)-specific binding sites and can function as miRNA sponges to regulate gene expression by suppressing the inhibitory effect of miRNAs on their target genes. MiR-21-5p has been reported to be involved in the development of head and neck squamous cell carcinoma (HNSCC) and plays an important role in the activation of epithelial-mesenchymal transition (EMT). However, the upstream regulatory mechanism and downstream targets of miR-21-5p in tumor cells remain unknown. CircRNA_ACAP2 inhibits the function of miR-21-5p by binding to its specific binding sites in HNSCC cells. Overexpression of CircRNA_ACAP2 inhibits the proliferation and migration of HNSCC cells, while downregulation of CircRNA_ACAP2 has the opposite effect. STAT3 is a direct target gene of miR-21-5p and a transcription factor of ZEB1. We demonstrate that CircRNA_ACAP2 functions as a tumor suppressor gene in HNSCC and that its function is regulated via the miR-21-5p/STAT3 signaling axis.


2012 ◽  
Vol 97 (11) ◽  
pp. E2194-E2200 ◽  
Author(s):  
Anna Merlo ◽  
Sandra Bernaldo de Quiros ◽  
Pablo Secades ◽  
Iriana Zambrano ◽  
Milagros Balbín ◽  
...  

Background: Head and neck paragangliomas (HNPGLs) are rare tumors associated with the parasympathetic nervous system. Most are sporadic, but about one third result from germline mutations in succinate dehydrogenase (SDH) genes (SDHB, SDHC, SDHD, SDHA, or SDHAF2). Although a molecular connection between SDH dysfunction and tumor development is still unclear, the most accepted hypothesis proposes a central role of the pseudohypoxic pathway. SDH dysfunction induces abnormal stabilization of the hypoxia-inducible factors (HIFs) that regulate target genes involved in proliferation, apoptosis, angiogenesis, and metabolism. The involvement of these pathways in the development of sporadic HNPGLs is presently unknown. Objective: To get some insights into the hypoxic/pseudohypoxic molecular basis of HNPGLs, we attempted to define the gene, microRNA (miRNA), and HIF-1α expression patterns that distinguish tumors from normal paraganglia tissue. Design: Genome microarray and TaqMan low-density arrays were used to analyze gene and miRNA expression, respectively, in 17 HNPGL tumor tissues and three normal human carotid bodies. Twelve HNPGLs were used for validation of data. HIF-1α, SDHB, and iron-sulfur cluster scaffold protein (ISCU) protein expression was analyzed by immunohistochemistry. Results: We found activation of a canonical HIF-1α-related gene expression signaling only in a subset of HNPGLs from patients that did not harbor germline or somatic SDH mutations. The pseudohypoxic signature consisted in the overexpression of both HIF-1α-target genes and the HIF-1α-inducible miRNA, miR-210, and down-regulation of the miR-210 target gene, ISCU1/2. A decreased level of the iron-sulfur-containing protein SDHB was found by immunohistochemical analysis performed in two of these tumors. Conclusions: Collectively, this study unveiled a putative signaling axis of HIF-1α/miRNA-210/ISCU in a subset of HNPGLs that could have an impact on SDHB protein stability by a mechanism independent of SDH mutations, thus providing a foundation to better understand the functional interplay between HIF, miR-210, and mitochondria and its relevance in the pathogenesis of HNPGLs.


Author(s):  
Liwei Lang ◽  
Yuanping Xiong ◽  
Nestor Prieto-Dominguez ◽  
Reid Loveless ◽  
Caleb Jensen ◽  
...  

Abstract Background There is no consensus about the effective dosages of melatonin in cancer management, thus, it is imperative to fully understand the dose-dependent responsiveness of cancer cells to melatonin and the underlying mechanisms. Methods Head and neck squamous cell carcinoma (HNSCC) cells with or without melatonin treatment were used as a research platform. Gene depletion was achieved by short hairpin RNA, small interfering RNA, and CRISPR/Cas9. Molecular changes and regulations were assessed by Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, and chromatin Immunoprecipitation coupled with qPCR (ChIP-qPCR). The therapeutic efficacy of FGF19/FGFR4 inhibition in melatonin-mediated tumor growth and metastasis was evaluated in orthotopic tongue tumor mice. Results The effect of melatonin on controlling cell motility and metastasis varies in HNSCC cells, which is dose-dependent. Mechanistically, high-dose melatonin facilitates the upregulation of FGF19 expression through activating endoplasmic stress (ER)-associated protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor 4 (ATF4) pathway, which in turn promotes FGFR4-Vimentin invasive signaling and attenuates the role of melatonin in repressing metastasis. Intriguingly, following long-term exposure to high-dose melatonin, epithelial HNSCC cells revert the process towards mesenchymal transition and turn more aggressive, which is enabled by FGF19/FGFR4 upregulation and alleviated by genetic depletion of the FGF19 and FGFR4 genes or the treatment of FGFR4 inhibitor H3B-6527. Conclusions Our study gains novel mechanistic insights into melatonin-mediated modulation of FGF19/FGFR4 signaling in HNSCC, demonstrating that activating this molecular node confines the role of melatonin in suppressing metastasis and even triggers the switch of its function from anti-metastasis to metastasis promotion. The blockade of FGF19/FGFR4 signaling would have great potential in improving the efficacy of melatonin supplements in cancer treatment.


Author(s):  
Sanjib Chaudhary ◽  
Ramesh Pothuraju ◽  
Zafar Sayed ◽  
Dwight T. Jones ◽  
Surinder K. Batra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document