scholarly journals Faculty Opinions recommendation of MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation.

Author(s):  
Sekhar Reddy
2015 ◽  
Vol 100 (5) ◽  
pp. 1771-1779 ◽  
Author(s):  
Maomei Ruan ◽  
Min Liu ◽  
Qianggang Dong ◽  
Libo Chen

Abstract Context: The aberrant silencing of iodide-handling genes accompanied by up-regulation of glucose metabolism presents a major challenge for radioiodine treatment of papillary thyroid cancer (PTC). Objective: This study aimed to evaluate the effect of tyrosine kinase inhibitors on iodide-handling and glucose-handling gene expression in BHP 2-7 cells harboring RET/PTC1 rearrangement. Main Outcome Measures: In this in vitro study, the effects of sorafenib or cabozantinib on cell growth, cycles, and apoptosis were investigated by cell proliferation assay, cell cycle analysis, and Annexin V-FITC apoptosis assay, respectively. The effect of both agents on signal transduction pathways was evaluated using the Western blot. Quantitative real-time PCR, Western blot, immunofluorescence, and radioisotope uptake assays were used to assess iodide-handling and glucose-handling gene expression. Results: Both compounds inhibited cell proliferation in a time-dependent and dose-dependent manner and caused cell cycle arrest in the G0/G1 phase. Sorafenib blocked RET, AKT, and ERK1/2 phosphorylation, whereas cabozantinib blocked RET and AKT phosphorylation. The restoration of iodide-handling gene expression and inhibition of glucose transporter 1 and 3 expression could be induced by either drug. The robust expression of sodium/iodide symporter induced by either agent was confirmed, and 125I uptake was correspondingly enhanced. 18F-fluorodeoxyglucose accumulation was significantly decreased after treatment by either sorafenib or cabozantinib. Conclusions: Sorafenib and cabozantinib had marked effects on cell proliferation, cell cycle arrest, and signal transduction pathways in PTC cells harboring RET/PTC1 rearrangement. Both agents could be potentially used to enhance the expression of iodide-handling genes and inhibit the expression of glucose transporter genes.


2001 ◽  
Vol 120 (5) ◽  
pp. A493-A494
Author(s):  
Koji Isozaki ◽  
Florence De Smedt ◽  
Christophe Erneux ◽  
Serge N. Schiffmann ◽  
Jean-Marie Vanderwinden

Sign in / Sign up

Export Citation Format

Share Document