scholarly journals Investigation of soils of stubbles of winter wheat and winter peas in conventional and reduced tillage systems

2016 ◽  
pp. 95-99
Author(s):  
Géza Tuba ◽  
Györgyi Kovács ◽  
József Zsembeli

The effect of reduced and conventional tillage on soil compaction, soil moisture status and carbon-dioxide emission of the soil was studied on a meadow chernozem soil with high clay content in the soil cultivation experiment started in 1997 at Karcag Research Institute. Our investigations were done on stubbles after the harvest of winter wheat and winter peas after the very droughty vegetation period of 2014/2015. We established that the soil in both tillage systems was dry and compacted and the CO2-emission was very low. The positive effects of reduced tillage could be figured out only in the soil layer of 40–60 cm in the given weather conditions of that period.

2013 ◽  
pp. 183-186
Author(s):  
Géza Tuba

he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.


Author(s):  
Alina ŞIMON ◽  
Felicia CHEŢAN ◽  
Cornel CHEŢAN ◽  
Marius BĂRDAŞ

Plants of spontaneous flora are in constant competition with culture plants for water, nutrients and other vegetation factors. The degree of weeding was determined in 2014-2016, at four crops - winter wheat, maize, soybeans and peas, cultivated in conventional tillage system and conservation tillage. Temperatures and precipitations registered on the vegetation period in three year had a high influence on the number of weeds found in agricultural crops, so in 2015 there was a smaller number of weeds than in 2014 respectively 2016. Of the species determined in this period is noted for annual dicotyledonous (most of them Chenopodium sp., Veronica sp. and Xanthium strumarium), and among the species of monocotyledonous species Echinochloa sp. and Setaria sp. which are found in all four cultures. In the case of the application of conservative tillage systems there is an increase in the number of weeds compared to the conventional tillage system. The average yields obtained by maize, soybean and peas at application of conservative tillage systems are close to the classical tillage system, the winter wheat yield was higher in the no tillage system than in the classical tillage system.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1303
Author(s):  
Małgorzata Holka ◽  
Jerzy Bieńkowski

In recent years, an increasing interest has been observed in the reduction in environmental threats posed by the food production chain beginning with agricultural production. The impact of agriculture on the environment varies depending on farming practices. The aim of the study was to assess and compare the environmental effects of the life cycle of winter wheat cultivation in three soil tillage systems: conventional tillage, reduced tillage, and no-tillage. The study was conducted in 2015–2017 on 15 agricultural farms located in the Wielkopolska region, Poland. The “cradle-to-farm gate” life cycle of wheat production was analysed using life cycle assessment methodology. The values of impact category indicators, especially in the case of global warming potential, acidification potential, and eutrophication potential, depended mainly on mineral fertilization. Wheat production generated more adverse emissions with increased nitrogen fertilization both in reduced tillage and no-tillage systems on the studied farms, and consequently resulted in a more negative impact on the environment compared to wheat cultivated in the conventional tillage system. After nitrogen fertilization, use of fossil fuel, and phosphorus and potassium fertilization were the top contributors to environmental impacts of winter wheat production in different tillage systems. The pre-production phase associated with the agricultural means of production was dominant in determining the analysed environmental impacts, except for global warming potential and photochemical ozone creation potential, which depended mainly on the production phase on the farm. The other key environmental impacts that should be considered when it comes to improvements in the life cycle of wheat production were depletion of mineral resources and acidification.


Author(s):  
Georgiy Gulyuk ◽  
Aleksey Ivanov ◽  
Yuri Yanko

Current situation and agricultural management on the non-black earth area of Russia arebeing gradually worsen by the negative natural factors such as a significant increase of weather based climatic abnormal risks, deterioration of agro-meliorative conditions of agricultural lands because of colonization by tree and shrubbery vegetation and secondary bog formation, hidden degradation of soil fertility. When combined with functional loss of ameliorative complex and meliorative systems amortization, regional agriculture adaptation possibilities were rapidly limited. Production shortfall due no abnormal weather conditions for particular field crops was 19…48% during last five years, level of business realization of bioclimatic potential on a field was decreased by 7…12%.The complete realization of regional agricultural adaptive potential to weather based climatic changes and limitation of greenhouse gases emissions is possible on a basis of regeneration ofalll functions and aspects of ameliorative complex management. Toward this goal the coordinated actions of federal and regional management of Agricultural Complex, Scientific and Educational institutions, project foundations and managers are needed in a relation to human resources, scientific and regulatory supply. Any incomplete treatment in these fields inherent in visual negative consequences for food security and social economic development of rural areas of non-black earth zones not only at the current historical moment, but in a future also. Fundamental influence of solving of these problems deserves to scientific supply of innovative ameliorative complex, renewal of which should be based on principals of resources and energy preservation, nature management, computerization and digitalization management. During a long term research it was established that increase of average vegetation period temperature by lоСhas increased productivity of winter wheat, barley and summer wheat in average on 0,7 tons per ha, winter wheat and oat on 0,4 tons per ha, potatoes – 8,2 tons per ha, edible roots-6,4 tons per ha, cabbage 9,8 tons per ha, dry basis of herbage of multi and one age grasses–0,5 and 0,7 tons per ha. Increase of СО2 Concentration from 0,35 to 0,45% during last twenty years contributed into grow of yield in regional agriculture which can be estimated as 0,3 tons per ha per measure; searching remedy for agroclimatical risks decreasing production became drainage and irrigation systems (decrease 3…5 times);new method of reclamation of abandoned areas with transformation of biomass of tree and shrubbery vegetation into biochar makes it possible to decrease СО2 emissions up to times and get an adverse balance of СО2;secondary reclamation of lands covered by trees and shrubbery on area of 22ha used for vegetables and area of 37ha used for forage crops could supply a farmer with work and revenue sufficient for maintenance of one child what is on the major facts of population declaim in rural areas.


2011 ◽  
Vol 56 (2) ◽  
pp. 111-119
Author(s):  
Branimir Mikic ◽  
Bojan Stipesevic ◽  
Emilija Raspudic ◽  
Georg Drezner ◽  
Bojana Brozovic

Modern soil tillage systems based on different tools than mouldboard plough have very often stronger weed occurrence, which can be a serious problem for achieving high yields. An obvious solution for weed suppression is a herbicide, whose improper use can deteriorate environment and lead toward serious ecological problems. In order to investigate the interaction between soil tillage and herbicide, trial was set up in Valpovo in seasons 2008/09 - 2010/11. Two soil tillage systems (CT-conventional tillage, based on mouldboard ploughing, and CH-chiselling and disk harrowing, without ploughing) and five herbicide treatments (NH-control, no herbicides; H10- recommended dose of Herbaflex (2 l ha-1); H05-half dose of Herbaflex; F10- recommended dose of Fox (1.5 l ha-1); and F05-half dose of Fox) were applied to winter wheat crops. Results showed similar effects of soil tillage on the winter wheat yield, whereas different herbicide dosages showed similar weed suppression and influence on winter wheat yield.


2011 ◽  
Vol 35 (6) ◽  
pp. 1985-1994 ◽  
Author(s):  
Carina Rosa Álvarez ◽  
Alejandro Oscar Costantini ◽  
Alfredo Bono ◽  
Miguel Ángel Taboada ◽  
Flavio Hernán Gutiérrez Boem ◽  
...  

One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.


2006 ◽  
Vol 20 (1) ◽  
pp. 249-254 ◽  
Author(s):  
Ronald J. Levy ◽  
Jason A. Bond ◽  
Eric P. Webster ◽  
James L. Griffin ◽  
Steven D. Linscombe

Field research was conducted for 3 yr to evaluate crop response and weed control under conventional and reduced tillage in drill- and water-seeded imidazolinone-tolerant (IT) rice culture. Imazethapyr was applied at 70 g ai/ha PRE followed by (fb) imazethapyr at 70 g/ha applied POST to three- to four-leaf rice or at 105 g/ha PRE fb 70 g/ha POST. In both conventional and reduced tillage systems, imazethapyr applied PRE fb POST at 70 g ai/ha controlled red rice, barnyardgrass, Amazon sprangletop, and rice flatsedge 87 to 99% 35 d after POST treatment (DAT). At 35 DAT, Indian jointvetch control with sequential applications of imazethapyr was as high as 70% in water-seeded rice but no more than 54% in drill-seeded rice. Tillage, seeding method, and imazethapyr rate had no effect on days to 50% heading, seeds per panicle, seed weight per panicle, or percentage of seed harvest. However, a reduction of 27% in days to 50% heading, 80% in seeds per panicle, 84% in seed weight per panicle, and 100% in percentage seed harvest index occurred when imazethapyr was not applied because of weed interference. Culm number was reduced 28%, and culm weight 32% under reduced tillage compared with conventional tillage. With sequential applications of imazethapyr at 70 g/ha, rice yield was 63% greater when rice was water-seeded compared with drill-seeded. No differences in tillage systems for weed control, days to 50% heading, seed number, seed weight per panicle, percent seed, panicle height, lodging, or yield were observed. Results of these experiments demonstrate imazethapyr will effectively control weeds in both water- and drill-seeded rice and that reduced tillage can be used without negatively affecting rice production.


1996 ◽  
Vol 10 (2) ◽  
pp. 311-316 ◽  
Author(s):  
Robin R. Bellinder ◽  
Russell W. Wallace ◽  
Erik D. Wilkins

Time of hilling (4, 5, or 6 weeks after planting; WAP) and 0.5x, 1x, and split (0.5x + 0.5x) rates of metolachlor + metribuzin were evaluated in conventional tillage (CT) and rye-stubble, reduced tillage (RT) potato plots. Weed populations 4 to 10 WAP were generally higher in CT than in RT. Weed control was excellent in both tillage systems when 1x rates of metolachlor + metribuzin were applied delayed preemergence, or in a split application where 0.5x was applied delayed PRE and hilled 6 WAP, and followed with a second application of 0.5x metolachlor + metribuzin 7 days after hilling (DAH). Weed control with 0.5x rates of metolachlor + metribuzin applied 7 DAH, when hilled 4 and 5 WAP, was equivalent to the lx and split-rate treatments. Weed control was reduced only when hilling was delayed to 6 WAP and 0.5x of metolachlor + metribuzin applied 7 DAH. Total yields were not influenced by tillage, hilling, or herbicide treatment, however, larger numbers of green and small-sized tubers reduced marketable yields in RT.


2005 ◽  
Vol 53 (1) ◽  
pp. 53-57 ◽  
Author(s):  
T. Rátonyi ◽  
L. Huzsvai ◽  
J. Nagy ◽  
A. Megyes

The cultivation technologies for the dominant crops in Hungary need to be improved both in the interests of environmental protection and to reduce cultivation costs. A long-term research project was initiated in order to determine the feasibility of conservation tillage systems. The aim of the experiments was to evaluate conservation farming systems in Hungary in order to achieve more economical and more environment-friendly agricultural land use. Four tillage systems, namely conventional tillage (mouldboard plough), conservation tillage I (primary tillage with a J.D. Disk Ripper), conservation tillage II (primary tillage with a J.D. Mulch Finisher) and no tillage (direct drilling), were compared on a clay loam meadow soil (Vertisol). The physical condition of the experimental soils was evaluated using a hand-operated static cone penetrometer. Parallel with the measurement of penetration resistance, the moisture content of the soil was also determined. The grain yield of maize hybrids (Kincs SC [1999], Occitán SC [2000], Pr 37M34 SC [2001], DeKalb 471 SC [2002]) was measured using a plot combine-harvester. The analysis of soil conditions confirmed that if the cultivation depth and intensity are reduced the compaction of soil layers close to the surface can be expected. The decrease in yields (8-33%) in direct drilling (NT) and shallow, spring cultivated (MF) treatments, despite the higher available water content, can be explained partly by the compacted status of the 15-25 cm soil layer.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


Sign in / Sign up

Export Citation Format

Share Document