scholarly journals Physico-chemical Characterization of Kaptai Lake and Foy’s Lake Water Quality Parameters in Chittagong, Bangladesh

In order to protect the quality of the environment and human health, freshwater assets are tremendously important in various ways. To ensure the freshwater resources in the Chittagong region of Bangladesh, we have studied the water quality parameters of Kaptai and Foy’s Lake. This research has done based on the essential surface water standard parameters such as pH, temperature, DO, BOD, COD, TDS, TSS, TS, EC, hardness, turbidity, salinity, total alkalinity, total acidity, SO42-, PO43-, NO3--N, NO2-, CO2, and most of the heavy and toxic metals (As, Cd, Cr, Cu, Co, Fe, Pb, Mn, Ni, and Zn) of two lakes namely Foy’s (Chittagong) and Kaptai (Rangamati) Lakes in Chittagong , Bangladesh. The statistical approaches to sampling were utilized for collecting samples. The samples were assembled from ten different locations of each lake. Samples were conserved using a satisfactory preservation procedure. Water samples from the surface-water assets were collected from various locations, and tide conditions and at various seasons for continual monitoring during the hydrological years 2014-2015. The results showed that Kaptai Lake and Foy’s Lake all physicochemical parameters are within the permissible limit of WHO guidelines. The results also supplied data to view, and quantify the enemy of the impact of climate alter on freshwater resources of this region. The outcomes further showed data for water quality of surface-water resources of greater Chittagong zone to match national and international quality for drinking, agricultural, manufacture and livestock requirements. A strategic water quality management plan has been proposed.

2009 ◽  
Vol 59 (11) ◽  
pp. 2167-2178
Author(s):  
Seo Jin Ki ◽  
Joo-Hyon Kang ◽  
Young Geun Lee ◽  
Yun Seok Lee ◽  
Suthipong Sthiannopkao ◽  
...  

Comprehensive water quality monitoring was conducted to assess the water quality conditions and to determine the impact of urban infrastructure on ambient water quality in Angkor, Cambodia. During this study, surface water, groundwater, and sediment samples were collected for two distinctive seasons in 2006–2007 at 58 monitoring sites along and near the Siem Reap River, in Tole Sap Lake (TSL), and West Baray, the primary water resources in this region. To assess the seasonal and spatial variability of 27 water quality parameters, multivariate analysis of variance, hierarchical cluster analysis, and the Kruskal-Wallis test were conducted using the obtained data. Differences and relationships between the surface water and groundwater were also investigated using t-test and correlation analysis, respectively. The results of these tests showed that the bacterial indicators need special attention as the urban infrastructure of the downtown area caused increased levels of these bacterial indicators in both surface water and groundwater. However, for most parameters, though surface water showed strong seasonal variations, groundwater presented relatively stable conditions between seasons (p>0.05) with site-specific geochemical conditions. Sediment quality illustrated that pollution levels of 10 trace metals were the highest in TSL because of its unique characteristic (river with backward flow), but did not reflect any potential enrichment from urban development. Overall, the results reveal that while the urban infrastructure in this region has not significantly affected most of the water quality parameters, bacteria and coliphages are still a main concern due to their contributions in widespread waterborne diseases. Thus, careful mitigation plans for reducing each pollutant source are needed in the Angkor area.


Author(s):  
Nguyen Ngan Ha ◽  
Tran Thi Thu Huong ◽  
Pham The Vinh ◽  
Tran Thi Van

This paper presents the study of integrating the remote sensing technology with in-situ ground observation for assessing the status of water quality in Ca Mau city through the Vietnam Water Quality Index (VN-WQI). The Sentinel-2 image and in-situ surface water samples were collected on 20 February 2020 for this study. The sample results were then specified by samples’ coordination. Besides, Sentinel-2 imaging was processed by radiometric and atmospheric correction, geometric registration, and extracted pixel spectral values from the sample locations. The multiple linear regressions of seven water quality parameters including BOD5, COD, NH4, PO4, TSS, pH, Coliform with surface water’s pixel spectral values from the satellite images were calculated and used to simulate water quality parameters on the satellite image. They were integrated into the VN-WQI to estimate, classify, and evaluate the general surface water quality of the Ca Mau city. The results show that there is a regressive correlation between measured data and image spectral values, and the simulation also well fits with the data with an acceptable error. The surface water quality of Ca Mau city is heavily polluted with almost all water quality parameters recognized at B1 to above B2 level according to the QCVN08-MT:2015/BTNMT. In terms of VN-WQI, the results also illustrate the low quality of surface water and heavy pollution only used for water transportation, not for domestic use. This approach can be a powerful method in spatially monitoring water quality and supporting environment management.


2016 ◽  
Vol 8 (1) ◽  
pp. 173-178
Author(s):  
Aakriti Chauhan ◽  
S. C. Verma ◽  
S. K. Bhardwaj ◽  
Uday Sharma ◽  
Rakesh Kumar Gupta ◽  
...  

The present investigations were carried out in the year 2014 with an objective to find out the impact of different cropping systems on nearby surface water resources in Shimla region of Himachal Pradesh. The aim of the study was to monitor the surface water bodies for pollution caused by nearby cropping systems in the Shimla area. In this study fruit, fruit + vegetable, vegetable and cereal based cropping systems were selected along with control (uncultivated land) and sampling was done during winter, summer and rainy seasons. The estimated water quality parameters revealed very less organic pollution and pH values were within the BIS prescribed limits of 6.5-8.5. Under vegetable based cropping system EC (500.23 µS cm−1), TDS (329.17 mg/l), BOD (1.48 mg/l), COD (31.09 mg/l), Cl- (25.66 mg/l), Ca (75.59 mg/l) and Mg (11.14 mg/l) were in high concentration, whereas No3- content were high under fruit + vegetable based cropping system. DO were maximum (8.61mg/l) under uncultivated land. Calcium and COD were high in some samples, which could be from anthropogenic sources, rest of the parameters were within the desirable limits prescribed by Bureau of Indian Standards (BIS). The experimental data were statistically analysed through Analysis of variance (two way classification of data) indicated positive correlation among most of the physical and chemical parameters. Study reveals that cropping systems as well as seasonal changes has affected the water quality. The study carried out for water quality parameters, revealed the correlation of each parameter with one another under different cropping systems.


Author(s):  
Saroj Nayak

This work evaluates the surface water quality in terms of physico-chemical parameters of the Brahmani River, Odisha using statistical analysis involving the calculation of correlation coefficient and regression equation. Besides this, the work also highlights and draws attention towards the “Water Quality Index” in a simplified format which may be used at large and could represent the reliable picture of water quality. Surface water quality data is taken from OSPCB of various location i.e. Panposh D/S, Rourkela D/S, Rengali, Talcher U/S, Kamalanga D/S, Bhuban, Pattamundai and was assessed for summer, monsoon, winter for the years 2011, 2012, 2013, 2014 and 2015. Average of values, minimum of values and maximum of values of water quality parameters were obtained seasonally over the above mentioned years. Besides this, the standard deviation for the water quality parameters was also obtained for water quality parameters namely pH, Temperature, DO, TDS, Alkalinity, EC, Na+, Ca2+, Mg2+, K+, F-, Cl-, NO3-, SO42- and PO42-. Seasonal changes in various physical and chemical parameters were analysed.The values obtained were compared with the guideline values for drinking water by Bureau of Indian Standard (BIS). A systematic correlation and regression study is carried out for three seasons, showed linear relationship among different water quality parameters. This provides an easy and rapid method of monitoring water quality. Highly significant (0.8< r <1.0), moderately significant (0.6< r <0.8) and significant (0.5< r <0.6) correlations between the parameters have been worked out. High correlation coefficient has been observed between TDS,EC-Na+, Ca2+, Cl-, SO42- ; Na+- Cl-. From the collected quantities, certain parameters were selected to derive WQI for the variations in water quality of each designated sampling site. WQI of Brahmani River ranged from 36.7 to 44.1 which falls in the range of good quality of water.Panposh D/S and Rourkela D/S showed poor water quality in summer and winter season. It is shown that WQI may be a useful tool for assessing water quality and predicting trend of variation in water quality at differentlocations in the Brahmani River.


2018 ◽  
Vol 69 (8) ◽  
pp. 2045-2049
Author(s):  
Catalina Gabriela Gheorghe ◽  
Andreea Bondarev ◽  
Ion Onutu

Monitoring of environmental factors allows the achievement of some important objectives regarding water quality, forecasting, warning and intervention. The aim of this paper is to investigate water quality parameters in some potential pollutant sources from northern, southern and east-southern areas of Romania. Surface water quality data for some selected chemical parameters were collected and analyzed at different points from March to May 2017.


2021 ◽  
Vol 9 (5) ◽  
pp. 474
Author(s):  
René Rodríguez-Grimón ◽  
Nestor Hernando Campos ◽  
Ítalo Braga Castro

Since 2013, there has been an increase (>23%) in naval traffic using maritime routes and ports on the coastal fringe of Santa Marta, Colombia. Of major concern, and described by several studies, is the relationship between maritime traffic and coastal contamination. This study proposed a maritime traffic indicator considering the simultaneous effects of several relevant measurements of water quality parameters to estimate the impact of naval activity. The approach involved developing a model including the number of vessels, hull length, and permanence time in berths. In addition, water quality variables, considering climatic seasons, were used to verify association with maritime traffic and touristic activities. The high concentrations of total coliforms (TC) and dissolved/dispersed petroleum hydrocarbons in chrysene equivalents (DDPH) reported by the International Marina of Santa Marta (SM) were affected by the local anthropic activities, including tourism, naval traffic, and urban wastewater discharges. Moreover, our results suggest the occurrence of multiple chemical impacts within Tayrona National Natural Park (PNNT) affecting conservation goals. The estimation of the maritime traffic indicator proposed in this study may be an easy and more complete tool for future studies evaluating the impact of naval activities on environmental quality.


2021 ◽  
Vol 13 (9) ◽  
pp. 1683
Author(s):  
Nandini Menon ◽  
Grinson George ◽  
Rajamohananpillai Ranith ◽  
Velakandy Sajin ◽  
Shreya Murali ◽  
...  

Turbidity and water colour are two easily measurable properties used to monitor pollution. Here, we highlight the utility of a low-cost device—3D printed, hand-held Mini Secchi disk (3DMSD) with Forel-Ule (FU) colour scale sticker on its outer casing—in combination with a mobile phone application (‘TurbAqua’) that was provided to laymen for assessing the water quality of a shallow lake region after demolition of four high-rise buildings on the shores of the lake. The demolition of the buildings in January 2020 on the banks of a tropical estuary—Vembanad Lake (a Ramsar site) in southern India—for violation of Indian Coastal Regulation Zone norms created public uproar, owing to the consequences of subsequent air and water pollution. Measurements of Secchi depth and water colour using the 3DMSD along with measurements of other important water quality variables such as temperature, salinity, pH, and dissolved oxygen (DO) using portable instruments were taken for a duration of five weeks after the demolition to assess the changes in water quality. Paired t-test analyses of variations in water quality variables between the second week of demolition and consecutive weeks up to the fifth week showed that there were significant increases in pH, dissolved oxygen, and Secchi depth over time, i.e., the impact of demolition waste on the Vembanad Lake water quality was found to be relatively short-lived, with water clarity, colour, and DO returning to levels typical of that period of year within 4–5 weeks. With increasing duration after demolition, there was a general decrease in the FU colour index to 17 at most stations, but it did not drop to 15 or below, i.e., towards green or blue colour indicating clearer waters, during the sampling period. There was no significant change in salinity from the second week to the fifth week after demolition, suggesting little influence of other factors (e.g., precipitation or changes in tidal currents) on the inferred impact of demolition waste. Comparison with pre-demolition conditions in the previous year (2019) showed that the relative changes in DO, Secchi depth, and pH were very high in 2020, clearly depicting the impact of demolition waste on the water quality of the lake. Match-ups of the turbidity of the water column immediately before and after the demolition using Sentinel 2 data were in good agreement with the in situ data collected. Our study highlights the power of citizen science tools in monitoring lakes and managing water resources and articulates how these activities provide support to Sustainable Development Goal (SDG) targets on Health (Goal 3), Water quality (Goal 6), and Life under the water (Goal 14).


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
MANOJ KUMAR SHUKLA

Present study points out the impact of Lockdown on the health of the Yamuna river at Delhi stretch by comparing prelockdown and Post-lockdown period by studying the reports of pollution monitoring agencies. Delhi segment of the Yamuna is highly polluted, where alongwith domestic sewage a huge quantity of industrial waste is being discharged continuously without proper treatment. Pre lockdown (March 2020) water quality parameters at three sampling stations named as Palla, Nizammuddin Bridge and Okhla barrage U/s in Delhi were, pH were 8.7, 7.3 and 7.2, DO were 17.1 mg/L, not detected in later two sites, BOD were 7.9 mg/L, 57 mg/L and 27 mg/L and COD were 28 mg/L, 90 mg/L and 95 mg/L respectively and postlockdown period (April 2020) the pH was 7.8, 7.2 and 7.1, DO was 8.3 mg/L, 2.4 mg/L and 1.2 mg/L BOD was 2 mg/L, 5.6 mg/ L and 6.1 mg/L and COD were 6 mg/L, 16 mg/L and 18 mg/L respectively. The study of these parameters at three sampling stations reveals that the lack of industrial pollutants discharging due to nationwide lockdown for COVID-19 pandemic had positive effect on water quality of this river. Water quality could be maintained by planned establishment of industries and setup of ETP with without gap between generation and treatment.


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


2020 ◽  
Vol 202 ◽  
pp. 04008
Author(s):  
Nurandani Hardyanti ◽  
Winardi D Nugraha ◽  
Vito Edgar S B

The industrial sector is one of the important sector in supporting the development of a region. Utilization of land around the river that is used for industrial activities will affect the quality of river water. The river can be polluted by waste personinating from industries that operating around the river. The catchment area that used for industry, agriculture, urban development, and the use of land for making roads (gravel or footpaths) can affect the flow of surface water and sediments that it brings to the river. Waste generated from industrial activities can pollute rivers which are a source of water for daily needs and affect the development of biota in them. This can affect river water quality


Sign in / Sign up

Export Citation Format

Share Document