scholarly journals DIFFERENTIATION OF DICHOTOMOUS EMOTIONAL STATES IN ELECTRODERMAL ACTIVITY SIGNALS USING HIGHER-ORDER CROSSING FEATURES AND PARAMETRIC CLASSIFIERS

2021 ◽  
Vol 57 (2) ◽  
pp. 322-332
Author(s):  
Yedukondala Rao Veeranki ◽  
◽  
Nagarajan Ganapathy ◽  
Ramakrishnan Swaminathan ◽  
◽  
...  

Prediction and recognition of happy and sad emotional states play important roles in many aspects of human life. In this work, an attempt has been made to classify them using Electrodermal Activity (EDA). For this, EDA signals are obtained from a public database and decomposed into tonic and phasic components. Features, namely Hjorth and higher-order crossing, are extracted from the phasic component of the signal. Further, these extracted features are fed to four parametric classifiers, namely, linear discriminant analysis, logistic regression, multilayer perceptron, and naive bayes for the classification. The results show that the proposed approach can classify the dichotomous happy and sad emotional states. The multilayer perceptron classifier is accurate (85.7%) in classifying happy and sad emotional states. The proposed method is robust in handling the dynamic variation of EDA signals for happy and sad emotional states. Thus, it appears that the proposed method could be able to understand the neurological, psychiatrical, and biobehavioural mechanisms of happy and sad emotional states.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Cheng ◽  
Xu Chen ◽  
Xiaohua Ding ◽  
Linting Zeng

Car-sharing is becoming an increasingly popular travel mode in China and many companies invest plenty of money on that including vehicle enterprises and Internet companies. But most of them build car-sharing stations by their experience or randomly as long as there is parking space in the early development of their business. This results in many stations with low operational efficiency and causes capital loss. This study aims to use different data source with statistical models and machine learning algorithm to help car-sharing operator to choose the optimal location of new stations and adjust the location of existing stations. We select Chengdu where there are huge amounts of car-sharing travel demand and several large car-sharing operators as the research area and two main operators as the research objects. Chengdu is divided into 58724 squared grids each of which is 0.5km⁎0.5km instead of focusing on the buffers generated by stations. We try to find a model to estimate a potential travel demand value for each small grid with three data sources: order data, population data, and Point of Interest (POI) data. This problem is transformed into a binary form and five different methods, Logistic Regression, Logistic Regression with LASSO, Naive Bayes, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, are implemented. The optimal model, Logistic Regression with LASSO, is chosen to estimate the probability of existence of demand in all grids. With car-sharing order data from different operators, an existing order heat value is also computed for each grid. Then we analyze and classify all the grids into four groups. For different groups of grids, we give different suggestions on the optimal location of stations. This study focuses on a more competitive market and finds the influential factors on order number. Suggestions on the optimal location of stations are given in consideration of competitors. We hope that our research can help operators improve their business and make rational plans.


2018 ◽  
Vol 33 (3) ◽  
pp. 799-811 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Kate D. Musgrave

Abstract This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases.


2017 ◽  
Vol 6 (3) ◽  
pp. 57-60
Author(s):  
Денис Кривогуз ◽  
Denis Krivoguz

Modern approaches to the region’s landslide susceptibility assessment are considered in this paper. Have been presented descriptions of the most used techniques for landslide susceptibility assessment: logistic regression, indicator validity, linear discriminant analysis and application of artificial neural networks. These techniques’ advantages and disadvantages are discussed in the paper. The most suitable techniques for various conditions of analysis have been marked. It has been concluded that the most acceptable techniques of analysis for a large number of input data related to the studied region are the method of logistic regression and indicator validity method. With these methods the most accurate results are achieved. When there is a lack of information, it is more expedient to use linear discriminant analysis and artificial neural networks that will minimize potential analysis inaccuracies.


2020 ◽  
Vol 43 (2) ◽  
pp. 233-249
Author(s):  
Adolphus Wagala ◽  
Graciela González-Farías ◽  
Rogelio Ramos ◽  
Oscar Dalmau

This study involves the implentation of the extensions of the partial least squares generalized linear regression (PLSGLR) by combining  it with logistic regression and  linear  discriminant analysis,  to  get a  partial least  squares generalized linear  regression-logistic regression model (PLSGLR-log),  and a partial least squares generalized linear regression-linear discriminant analysis model (PLSGLRDA). A comparative  study  of  the obtained  classifiers with   the   classical  methodologies like  the k-nearest  neighbours (KNN), linear   discriminant  analysis  (LDA),   partial  least  squares discriminant analysis (PLSDA),  ridge  partial least squares (RPLS), and  support vector machines(SVM)  is  then  carried  out.    Furthermore,  a  new  methodology known as kernel multilogit algorithm (KMA) is also implemented and its performance compared with those of the other classifiers. The KMA emerged as the best classifier based  on the lowest  classification error  rates  compared to  the  others  when  applied   to  the  types   of data   are considered;  the  un- preprocessed and preprocessed.


2020 ◽  
Vol 8 (9) ◽  
pp. 358-367
Author(s):  
O. Akangoziri ◽  
C. N. Okoli

This study examined comparison of the Multiple logistic regression, Linear discriminant analysis and Quadratic discriminant in estimating the infant birth outcome and misclassification error rate of birth outcomes with factors of infant mortality in Anambra State, Nigeria. The birth outcomes of interest were the Neonatal death, Still birth and Alive. Secondary source of data were obtained from the records department of General Hospital Onitsha from 2007-2016. The data comprises of Status of infant birth, Mothers parity, Age of mother, Weight of baby, Mothers Education Status, Number of Bookings before gestation and Gestation Age. The data analysis is performed using R-software. The result of the findings from the multiple logistic regression showed that Mothers Education Status (MES) and Booking contributed significantly on the logistic model while factors of Parity, Sex, Age of Mother (AOM), Year, GA and Birth Weight (BW) were found to be insignificant on birth outcomes. Also observed that the misclassification error rate for birth outcome for the said approach is found to be 0.5992 (59.92%). More so, findings of the study equally showed that the prior probabilities of the groups for the linear and quadratic discriminant analysis were 0.228503, 0.40168 and 0.36981 for Alive, Neonatal death and Still birth respectively. Further findings revealed that the Mothers Education Status and Bookings Status have the greatest impact for first and second linear function respectively. In addition, the result of the misclassification error rate for birth outcome using the linear discriminant analysis is 0.5931 (59.31%). The misclassification error rate for birth outcome based on   quadratic discriminant analysis is 0.5956 (59.56%). Based on the findings of this study, linear discriminant approach is the best alternative in estimating misclassification error rate of infant birth outcome followed by quadratic discriminant analysis and the least is multiple logistic regression. The findings clearly confirmed that the linear discriminant analysis is the best with misclassification error rate of 59.31%.


2004 ◽  
Vol 1 (1) ◽  
pp. 143-161
Author(s):  
Maja Pohar ◽  
Mateja Blas ◽  
Sandra Turk

Two of the most widely used statistical methods for analyzing categorical outcome variables are linear discriminant analysis and logistic regression. While both are appropriate for the development of linear classification models, linear discriminant analysis makes more assumptions about the underlying data. Hence, it is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions. In this paper we consider the problem of choosing between the two methods, and set some guidelines for proper choice. The comparison between the methods is based on several measures of predictive accuracy. The performance of the methods is studied by simulations. We start with an example where all the assumptions of the linear discriminant analysis are satisfied and observe the impact of changes regarding the sample size, covariance matrix, Mahalanobis distance and direction of distance between group means. Next, we compare the robustness of the methods towards categorisation and non-normality of explanatory variables in a closely controlled way. We show that the results of LDA and LR are close whenever the normality assumptions are not too badly violated, and set some guidelines for recognizing these situations. We discuss the inappropriateness of LDA in all other cases.


Sign in / Sign up

Export Citation Format

Share Document