scholarly journals Implicações da microbiota intestinal humana no processo de obesidade e emagrecimento: revisão sistemática/Implications of the human gut microbiota in obesity and weight loss: systematic review

2020 ◽  
Vol 3 (5) ◽  
pp. 15215-15229
Author(s):  
Joab Oliveira Salomão ◽  
Ian Dimas Cabral ◽  
Maria Olímpia Ribeiro do Vale Almada ◽  
Maria Olímpia Ribeiro do Vale Almada ◽  
Geilton Xavier de Matos ◽  
...  
2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
B Dorelli ◽  
M Iachini ◽  
M Zaccarin ◽  
J Preziosi Standoli ◽  
F Galle ◽  
...  

Abstract Background Gut microbiota development and composition can be influenced by an existing dynamic balance between host physiology and lifestyle. This systematic review aims to assess the impact of physical activity on human gut microbiota. Methods PubMed, Scopus and Web of Science were searched until May 2019. Full-text in English were recruited if focused on gut microbiota in healthy athletes or active people, without age or gender restrictions, collected on faecal samples and analysed with genome sequencing of rRNA 16S. All types of study design were included as long as they performed a comparison with a sedentary control group. No specific time frame for the publication date was applied. Quality assessment was performed using the JBI Critical Appraisal Checklist for Analytical Cross Sectional Studies (2017) and Cochrane Risk of Bias Tool for Randomized Controlled Trials. Results The analysis yielded 7/985 articles: five cross-sectional studies and two clinical trials, published from 2014 to 2019. The overall methodological assessment was of fair quality. Types of exercise included in the studies were: rugby, running, aerobic exercise, bodybuilding. More in detail, regarding the exercise load, some studies were conducted on elite professional athletes, such as rugby players, marathon runners or bodybuilders, with rigorous training, while other studies included a few weeks of aerobic and resistance training at a moderate intensity. Shannon diversity index increased in three studies. Concerning phyla, Firmicutes were increased in five studies and three studies described a significant decrease in Bacteroides. Conclusions This systematic review confirms the direct correlation between microbiota composition and physical activity, but further studies are needed to establish the possible presence of a causal link between the two factors. Key messages Exercise can play an important role as an environmental factor in determining gut microbiota composition. Further studies are needed to gain robust evidence of physical activity influence on gut microbiota variability.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marianna Roselli ◽  
Fausta Natella ◽  
Paola Zinno ◽  
Barbara Guantario ◽  
Raffaella Canali ◽  
...  

A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.


2018 ◽  
Vol 116 ◽  
pp. 13-21 ◽  
Author(s):  
Hanieh-Sadat Ejtahed ◽  
Pooneh Angoorani ◽  
Shirin Hasani-Ranjbar ◽  
Seyed-Davar Siadat ◽  
Nasrin Ghasemi ◽  
...  

2014 ◽  
Vol 24 (9) ◽  
pp. 1567-1571 ◽  
Author(s):  
Emily K. Ward ◽  
Dara P. Schuster ◽  
Katie H. Stowers ◽  
Amanda K. Royse ◽  
Diana Ir ◽  
...  

2020 ◽  
Vol 11 (3) ◽  
pp. 235-248 ◽  
Author(s):  
Hadith Tangestani ◽  
Hadi Emamat ◽  
Hamid Ghalandari ◽  
Sakineh Shab-Bidar

Background: The health benefits of dietary fibers have been proved for a long time. The importance of microbiota has been identified in human health and there is a growing interest to study the factors affecting it. Objective: This systematic review aimed to investigate the impact of fiber and whole grains (WGs) on human gut microbiota in a patent-based review. Methods: All related clinical trials were systematically searched on PubMed and Scopus search engines from inception up to Feb 2020. Interventional human studies reporting changes in microbiota by using any type of grains/fibers were included. The following information was extracted: date of the publication, location and design of the study, sample size, study population, demographic characteristics, the amount of dietary WGs/fiber, the duration of intervention, the types of grains or fibers, and changes in the composition of the microbiota. Results: Of 138 studies which were verified, 35 studies with an overall population of 1080 participants, met the inclusion criteria and entered the systematic review. The results of interventional trials included in this review suggest some beneficial effects of consuming different amounts and types of WGs and fibers on the composition of intestinal microbiota. Most included studies showed that the intake of WGs and fibers increases bifidobacteria and lactobacilli and reduces the pathogenic bacteria, such as Escherichia coli and clostridia in the human gut. Conclusion: The consumption of WGs/fibers may modify the intestinal microbiota and promote the growth of bifidobacteria and lactobacilli. Nevertheless, further research is warranted in different populations and pathological conditions.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document