scholarly journals Pemetaan Potensi Lahan Jagung Menggunakan Citra Satelit Dan Random Forest Pada Cloud computing Google Earth Engine

2021 ◽  
Vol 2021 (1) ◽  
pp. 1001-1011
Author(s):  
Dwi Wahyu Triscowati ◽  
Widyo Pura Buana ◽  
Arif Handoyo Marsuhandi

Ketersediaan informasi potensi lahan jagung yang cepat terbaharui penting untuk mendukung pemulihan ekonomi pasca covid 19. Pemetaan jagung menjadi suatu tantangan tersendiri di bidang pertanian karena areal penanaman jagung tidak memiliki ciri khusus seperti sawah, jagung belum memiliki peta luas baku, serta  penanamannya dapat dilakukan di sawah maupun lahan-lahan kering hutan. Permasalahan lainnya, perlu sumberdaya komputasi yang tinggi jika pemetaan jagung dilakukan secara langsung ataupun identifikasi secara manual. Dalam penelitian ini dilakukan pemetaan potensi jagung di Jawa Timur pada Kabupaten terpilih secara otomatis menggunakan Machine learning pada cloud computing google earth engine. Dengan penggunaan cloud computing GEE, pemetaan jagung dapat dilakukan pada area luas tanpa terkendala kemampuan komputer. Penelitian ini menggunakan algoritma pembelajaran mesin Random Forest(RF) berbasis piksel dengan input data dari satelit Landsat-8, Sentinel-1 dan Sentinel-2. Data referensi untuk melatih model klasifikasi menggunakan hasil KSA jagung. Akurasi hasil Machine learning paling baik berasal dari kombinasi Landsat-8 dan Sentinel-2 dengan rataan akurasi sebesar 0.79. Model klasifikasi kemudian diaplikasikan pada 10 Kabupaten dimana hasil terbaik adalah pada Kabupaten Banyuwangi dengan akurasi  0.89. Dilihat dari luas potensi jagung pada daerah Banyuwangi luasan berkisar dari 22.256,82 – 58.992,3 Ha berdasarkan pixel yang terprediksi sebagai jagung minimal 3 kali/bulan. Dari hasil kajian ini terbukti bahwa penggunaan cloud computing dapat melakukan penghitungan pada 10 Kabupaten secara cepat baik dari sisi pembangunan model maupun dari prediksinya. Selain itu karena menggunakan cloud computing pemanfaatan citra satelit dapat dimanfaatkan secepat mungking setelah citra satelit terbit/rilis sehingga prediksi dari potensi jagung dapat secara cepat dan tepat dihasilkan. Kajian ini juga menyoroti kekurangan yang terjadi yaitu dari sisi jumlah sampel untuk data latih dan keterbatasan algoritma yang digunakan sehingga kedepannya dapat dikembangkan lebih baik lagi.

2021 ◽  
Vol 8 (2) ◽  
pp. 85-92
Author(s):  
Trida Ridho Fariz ◽  
◽  
Fitri Daeni ◽  
Habil Sultan ◽  
◽  
...  

Informasi penutup lahan merupakan data yang sangat penting dalam pengelolaan Daerah Aliran Sungai (DAS). Tantangan dalam penyediaan informasi penutup lahan di DAS Kreo adalah tutupan awan dan cangkupan areanya yang cukup luas. Hadirnya platform pengolahan data spasial berbasis cloud yaitu Google Earth Engine (GEE) bisa menjawab tantangan tersebut. Oleh karena itu penelitian ini bertujuan untuk memetakan penutup lahan di DAS Kreo menggunakan klasifikasi berbasis machine learning pada GEE. Proses pemetaan penutup lahan di DAS Kreo menggunakan citra satelit Landsat 8 dan DEM SRTM. Input data yang digunakan antara lain band 1 sampai 7 pada citra Landsat 8, transformasi NDVI dan NDBI serta nilai elevasi dari DEM SRTM. Adapun tahun yang dipilih adalah tahun 2015 dan 2020 dengan machine learning yang diujikan meliputi CART, Random forest dan Voting SVM. Hasil penelitian ini menunjukkan bahwa machine learning yang terbaik dalam memetakan penutup lahan di DAS Kreo adalah Random forest. Penelitian ini masih terdapat banyak keterbatasan terutama kelas penutup lahan yang dipetakan.


2021 ◽  
Vol 13 (24) ◽  
pp. 13758
Author(s):  
Kotapati Narayana Loukika ◽  
Venkata Reddy Keesara ◽  
Venkataramana Sridhar

The growing human population accelerates alterations in land use and land cover (LULC) over time, putting tremendous strain on natural resources. Monitoring and assessing LULC change over large areas is critical in a variety of fields, including natural resource management and climate change research. LULC change has emerged as a critical concern for policymakers and environmentalists. As the need for the reliable estimation of LULC maps from remote sensing data grows, it is critical to comprehend how different machine learning classifiers perform. The primary goal of the present study was to classify LULC on the Google Earth Engine platform using three different machine learning algorithms—namely, support vector machine (SVM), random forest (RF), and classification and regression trees (CART)—and to compare their performance using accuracy assessments. The LULC of the study area was classified via supervised classification. For improved classification accuracy, NDVI (normalized difference vegetation index) and NDWI (normalized difference water index) indices were also derived and included. For the years 2016, 2018, and 2020, multitemporal Sentinel-2 and Landsat-8 data with spatial resolutions of 10 m and 30 m were used for the LULC classification. ‘Water bodies’, ‘forest’, ‘barren land’, ‘vegetation’, and ‘built-up’ were the major land use classes. The average overall accuracy of SVM, RF, and CART classifiers for Landsat-8 images was 90.88%, 94.85%, and 82.88%, respectively, and 93.8%, 95.8%, and 86.4% for Sentinel-2 images. These results indicate that RF classifiers outperform both SVM and CART classifiers in terms of accuracy.


2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Andrea Sulova ◽  
Jamal Jokar Arsanjani

Recent studies have suggested that due to climate change, the number of wildfires across the globe have been increasing and continue to grow even more. The recent massive wildfires, which hit Australia during the 2019–2020 summer season, raised questions to what extent the risk of wildfires can be linked to various climate, environmental, topographical, and social factors and how to predict fire occurrences to take preventive measures. Hence, the main objective of this study was to develop an automatized and cloud-based workflow for generating a training dataset of fire events at a continental level using freely available remote sensing data with a reasonable computational expense for injecting into machine learning models. As a result, a data-driven model was set up in Google Earth Engine platform, which is publicly accessible and open for further adjustments. The training dataset was applied to different machine learning algorithms, i.e., Random Forest, Naïve Bayes, and Classification and Regression Tree. The findings show that Random Forest outperformed other algorithms and hence it was used further to explore the driving factors using variable importance analysis. The study indicates the probability of fire occurrences across Australia as well as identifies the potential driving factors of Australian wildfires for the 2019–2020 summer season. The methodical approach and achieved results and drawn conclusions can be of great importance to policymakers, environmentalists, and climate change researchers, among others.


2021 ◽  
pp. 777
Author(s):  
Andi Tenri Waru ◽  
Athar Abdurrahman Bayanuddin ◽  
Ferman Setia Nugroho ◽  
Nita Rukminasari

Pulau Tanakeke merupakan salah satu pulau dengan hutan mangrove yang luas di pesisir Sulawesi Selatan. Hutan mangrove ini menjadi ekosistem penting bagi masyarakat sekitar karena nilai ekologi maupun ekonominya. Namun, dalam kurun waktu sekitar tahun 1980-2000, keberadaan mangrove tersebut terancam oleh perubahan penggunaan lahan dan juga pemanfaatan yang berlebihan. Penelitian ini bertujuan untuk menganalisis perubahan temporal luas dan tingkat kerapatan hutan mangrove di Pulau Tanakeke antara tahun 2016 dan 2019. Metode analisis perubahan luasan hutan mangrove menggunakan data citra satelit Sentinel-2 multi temporal berdasarkan hasil klasifikasi hutan mangrove dengan menggunakan random forest pada platform Google Earth Engine. Akurasi keseluruhan hasil klasifikasi hutan mangrove tahun 2016 dan 2019 sebesar 91% dan 98%. Berdasarkan hasil analisis spasial diperoleh perubahan penurunan luasan mangrove yang signifikan dari 800,21 ha menjadi 640,15 ha. Kerapatan mangrove di Pulau Tanakeke sebagian besar tergolong kategori dalam kerapatan tinggi.


2021 ◽  
pp. 161
Author(s):  
Royyannuur Kurniawan Endrayanto ◽  
Adharul Muttaqin

Pertanian merupakan salah satu sektor penting karena dapat memenuhi kebutuhan pangan sebagai kebutuhan pokok. Kebutuhan pangan masih menjadi salah satu isu hangat terlebih di masa pandemi COVID- 19 seperti saat ini. Pemenuhan kebutuhan pangan juga berkaitan erat dengan jumlah bahan pangan yang diproduksi oleh petani. Lingkungan merupakan salah satu faktor keberhasilan dalam kegiatan pertanian. Kondisi lingkungan Indonesia yang beragam seperti suhu dan tingkat presipitasi menyebabkan adanya perbedaan jenis tanaman pangan potensial setiap daerah di Indonesia. Oleh karena itu perlu upaya untuk mengoptimalkan produksi lahan pertanian berdasarkan faktor lingkungan di setiap daerah. Upaya ini diharapkan dapat membantu menjaga ketahanan pangan baik di masa pandemi dan pasca pandemi. Pada penelitian ini diperkenalkan pemanfaatan data geospasial untuk klasifikasi jenis tanaman pangan menggunakan algoritma machine learning sebagai upaya optimalisasi lahan pertanian. Data yang digunakan adalah Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS). Algoritma machine learning yang digunakan adalah algoritma klasifikasi Random Forest. Teknologi yang digunakan adalah Google Colab, Google Earth Engine dan Python. Tujuan dari penelitian ini adalah untuk mengklasifikasikan tanaman pangan yang memiliki potensi paling baik untuk ditanam di suatu daerah berdasarkan kondisi lingkungan yang ada.


2019 ◽  
Vol 71 (3) ◽  
pp. 702-725
Author(s):  
Nayara Vasconcelos Estrabis ◽  
José Marcato Junior ◽  
Hemerson Pistori

O Cerrado é um dos biomas existentes no Brasil e o segundo mais extenso da América do Sul. Possui grande importância devido a sua biodiversidade, ecossistema e principalmente por servir como um reservatório, ou “esponja”, que distribui água para os demais biomas, além de ser berço de nascentes de algumas das maiores bacias da América do Sul. No entanto, devido às atividades antrópicas praticadas (com destaque para a pecuária e silvicultura) e a redução da vegetação nativa, este bioma está ameaçado. Considerado como hotspot em biodiversidade, o Cerrado pode não existir em 2050. Com a necessidade de sua preservação, o objetivo desse trabalho consistiu em investigar o uso de algoritmos de aprendizado de máquina para realizar o mapeamento da vegetação nativa existente na região do município de Três Lagoas, utilizando a plataforma em nuvem Google Earth Engine. O processo foi realizado com uma imagem Landsat-8 OLI, datada de 10 de outubro de 2018, e com os algoritmos Random Forest (RF) e Support Vector Machine (SVM). Na validação da classificação, o RF e o SVM apresentaram índices kappa iguais a 0,94 e 0,97, respectivamente. O RF, quando comparado ao SVM, apresentou classificação mais ruidosa. Por fim, verificou-se a existência de vegetação nativa de aproximadamente 2556 km² ao adotar o RF e 2873 km² ao adotar SVM.


2021 ◽  
Author(s):  
Iuliia Burdun ◽  
Michel Bechtold ◽  
Viacheslav Komisarenko ◽  
Annalea Lohila ◽  
Elyn Humphreys ◽  
...  

<p>Fluctuations of water table depth (WTD) affect many processes in peatlands, such as vegetation development and emissions of greenhouse gases. Here, we present the OPtical TRApezoid Model (OPTRAM) as a new method for satellite-based monitoring of the temporal variation of WTD in peatlands. OPTRAM is based on the response of short-wave infrared reflectance to the vegetation water status. For five northern peatlands with long-term in-situ WTD records, and with diverse vegetation cover and hydrological regimes, we generate a suite of OPTRAM index time series using (a) different procedures to parametrise OPTRAM (peatland-specific manual vs. globally applicable automatic parametrisation in Google Earth Engine), and (b) different satellite input data (Landsat vs. Sentinel-2). The results based on the manual parametrisation of OPTRAM indicate a high correlation with in-situ WTD time-series for pixels with most suitable vegetation for OPTRAM application (mean Pearson correlation of 0.7 across sites), and we will present the performance differences when moving from a manual to an automatic procedure. Furthermore, for the overlap period of Landsat and Sentinel-2, which have different ranges and widths of short-wave infrared bands used for OPTRAM calculation, the impact of the satellite input data to OPTRAM will be analysed. Eventually, the challenge of merging different satellite missions in the derivation of OPTRAM time series will be explored as an important step towards a global application of OPTRAM for the monitoring of WTD dynamics in northern peatlands.</p>


Sign in / Sign up

Export Citation Format

Share Document