scholarly journals Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Zhenyuan Lin ◽  
Minghui Hong

As a noncontact strategy with flexible tools and high efficiency, laser precision engineering is a significant advanced processing way for high-quality micro-/nanostructure fabrication, especially to achieve novel functional photoelectric structures and devices. For the microscale creation, several femtosecond laser fabrication methods, including multiphoton absorption, laser-induced plasma-assisted ablation, and incubation effect have been developed. Meanwhile, the femtosecond laser can be combined with microlens arrays and interference lithography techniques to achieve the structures in submicron scales. Down to nanoscale feature sizes, advanced processing strategies, such as near-field scanning optical microscope, atomic force microscope, and microsphere, are applied in femtosecond laser processing and the minimum nanostructure creation has been pushed down to ~25 nm due to near-field effect. The most fascinating femtosecond laser precision engineering is the possibility of large-area, high-throughput, and far-field nanofabrication. In combination with special strategies, including dual femtosecond laser beam irradiation, ~15 nm nanostructuring can be achieved directly on silicon surfaces in far field and in ambient air. The challenges and perspectives in the femtosecond laser precision engineering are also discussed.

2020 ◽  
Vol 10 (37) ◽  
pp. 2001567 ◽  
Author(s):  
Shih‐Han Huang ◽  
Cheng‐Kang Guan ◽  
Pei‐Huan Lee ◽  
Hung‐Che Huang ◽  
Chia‐Feng Li ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1301
Author(s):  
Maria Caterina Giordano ◽  
Matteo Barelli ◽  
Giuseppe Della Valle ◽  
Francesco Buatier de Mongeot

Plasmonic metasurfaces based on quasi-one-dimensional (1D) nanostripe arrays are homogeneously prepared over large-area substrates (cm2), exploiting a novel self-organized nanofabrication method. Glass templates are nanopatterned by ion beam-induced anisotropic nanoscale wrinkling, enabling the maskless confinement of quasi-1D arrays of out-of-plane tilted gold nanostripes, behaving as transparent wire-grid polarizer nanoelectrodes. These templates enable the dichroic excitation of localized surface plasmon resonances, easily tunable over a broadband spectrum from the visible to the near- and mid-infrared, by tailoring the nanostripes’ shape and/or changing the illumination conditions. The controlled self-organized method allows the engineering of the nanoantennas’ morphology in the form of Au-SiO2-Au nanostripe dimers, which show hybridized plasmonic resonances with enhanced tunability. Under this condition, superior near-field amplification is achievable for the excitation of the hybridized magnetic dipole mode, as pointed out by numerical simulations. The high efficiency of these plasmonic nanoantennas, combined with the controlled tuning of the resonant response, opens a variety of applications for these cost-effective templates, ranging from biosensing and optical spectroscopies to high-resolution molecular imaging and nonlinear optics.


1999 ◽  
Vol 69 (7) ◽  
pp. S7-S11 ◽  
Author(s):  
F. Korte ◽  
S. Nolte ◽  
B.N. Chichkov ◽  
T. Bauer ◽  
G. Kamlage ◽  
...  

Open Physics ◽  
2010 ◽  
Vol 8 (3) ◽  
Author(s):  
Petr Klapetek ◽  
Juraj Bujdák ◽  
Jiří Buršík

AbstractThis article presents results of near-field scanning optical microscope measurement of local luminescence of rhodamine 3B intercalated in montmorillonite samples. We focus on how local topography affects both the excitation and luminescence signals and resulting optical artifacts. The Finite Difference in Time Domain method (FDTD) is used to model the electromagnetic field distribution of the full tip-sample geometry including far-field radiation. Even complex problems like localized luminescence can be simulated computationally using FDTD and these simulations can be used to separate the luminescence signal from topographic artifacts.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 915 ◽  
Author(s):  
Lei Shi ◽  
Huiying Hao ◽  
Jingjing Dong ◽  
Tingting Zhong ◽  
Chen Zhang ◽  
...  

Intermediate phase is considered an important aspect to deeply understand the crystallization procedure in the growth of high-quality perovskite layers by an anti-solvent technique. However, the moisture influence on the intermediate phase formation is not clear in air conditions as yet. In this work, pure (FA0.2MA1.8)Pb3X8(DMSO·DMF) intermediate phase was obtained in as-prepared perovskite film by spin-coating the precursor of co-solvent (DMSO and DMF) in an ambient air (RH20–30%). Moreover, the appropriate quantity of ethyl acetate (C4H8O2, EA) also controls the formation of pure intermediate phase. The uniform and homogeneous perovskite film was obtained after annealing this intermediate film. Therefore, the best power conversion efficiency (PCE) of perovskite solar cells (PSCs) is 16.24% with an average PCE of 15.53%, of which almost 86% of its initial PCE was preserved after 30 days in air conditions. Besides, the steady-state output efficiency ups to 15.38% under continuous illumination. In addition, the PCE of large area device (100 mm2) reaches 11.11% with a little hysteresis effect. This work would give an orientation for PSCs production at the commercial level, which could lower the cost of fabricating the high efficiency PSCs.


Author(s):  
Andrew Glen ◽  
Darielle Dexheimer ◽  
Andres L. Sanchez ◽  
Clifford K. Ho ◽  
Swarup China ◽  
...  

Abstract High-temperature falling particle receivers are being investigated for next-generation concentrating solar power applications. Small sand-like particles are released into an open-cavity receiver and are irradiated by concentrated sunlight from a field of heliostats. The particles are heated to temperatures over 700 °C and can be stored to produce heat for electricity generation or industrial applications when needed. As the particles fall through the receiver, particles and particulate fragments in the form of aerosolized dust can be emitted from the aperture, which can lower thermal efficiency, increase costs of particle replacement, and pose a particulate matter (PM) inhalation risk. This paper describes sampling methods that were deployed during on-sun tests to record near-field (several meters) and far-field (tens to hundreds of meters) concentrations of aerosol particles within emitted plumes. The objective was to quantify the particulate emission rates and loss from the falling particle receiver in relation to OSHA and EPA National Ambient Air Quality Standards (NAAQS). Near-field instrumentation placed on the platform in proximity to the receiver aperture included several real-time aerosol size distribution and concentration measurement techniques, including a TSI Aerodynamic Particle Sizers (APS), TSI DustTraks, Handix Portable Optical Particle Spectrometers (POPS), Alphasense Optical Particle Counters (OPC), TSI Condensation Particle Counters (CPC), Cascade Particle Impactors, 3D-printed prototype tipping buckets, and meteorological instrumentation. Far-field particle sampling techniques utilized multiple tethered balloons located upwind and downwind of the particle receiver to measure the advected plume concentrations using a suite of airborne aerosol and meteorological instruments including POPS, CPCs, OPCs and cascade impactors. The combined aerosol size distribution for all these instruments spanned particle sizes from 0.02 μm – 500 μm. Results showed a strong influence of wind direction on particle emissions and concentration, with preliminary results showing representative concentrations below both the OSHA and NAAQS standards.


Nano Letters ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 4947-4952 ◽  
Author(s):  
Zhenyuan Lin ◽  
Huagang Liu ◽  
Lingfei Ji ◽  
Wenxiong Lin ◽  
Minghui Hong

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 748
Author(s):  
Lubos Suslik ◽  
Jaroslava Skriniarova ◽  
Jaroslav Kovac ◽  
Dusan Pudis ◽  
Anton Kuzma ◽  
...  

In this paper, we present the optical and electrical properties of surface-patterned GaAs-based Multiquantum Well (MQW) light emitting diodes (LEDs) with one- and two-dimensional photonic crystal (PhC) structures. Optical properties were analyzed in the near and far field, measured by a near-field scanning optical microscope and with a goniophotometer. We demonstrated a strong effect of patterned PhC on the radiation properties and the light extraction efficiency. Enormous surface emission enhancement reaching 110% confirmed the strong effect of the patterned structure on the coupling of the guided modes into the surface emission. Additionally, the considerable effect of the PhC structure diffraction on radiation pattern was confirmed in the near and far field and is in good agreement with the simulated shape of the optical field.


2005 ◽  
Vol 80 (3) ◽  
pp. 461-465 ◽  
Author(s):  
Y. Lin ◽  
M.H. Hong ◽  
W.J. Wang ◽  
Y.Z. Law ◽  
T.C. Chong

Sign in / Sign up

Export Citation Format

Share Document