scholarly journals Bioinformatic Evaluation of the miRNAs Targeting ACE2 Gene in COVID-19

2021 ◽  
Vol 10 (4) ◽  
pp. 135-143
Author(s):  
Milad Rafat ◽  
Aida Roshan ◽  
Mahya Abyar ◽  
Saba Keramati ◽  
Amin Reza Nikpoor

Introduction: Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which began in late 2019 in Wuhan, China, has become a global epidemic. Angiotensin 2 converting enzyme (ACE2) acts as a receptor for host function to cause acute coronavirus 2 acute respiratory syndrome (SARS-CoV-2). ACE2 is abundantly expressed in different cells of different human organs. In human physiology, ACE2 is a major player in the renin-angiotensin-aldosterone (RAAS) system by degrading angiotensin II. Many factors have been associated with altered ACE2 expression and the severity and progression of COVID-19, including microRNAs that may be effective in it. Identifying pathological changes due to SARS-CoV-2 infection is important because it has major implications for understanding the pathophysiology of COVID-19 and developing evidence-based treatment strategies. Currently, many intervention strategies are being explored in ongoing clinical trials. Objective: The aim of this study is to use bioinformatics databases to find potential antiviral therapies against SARS-CoV-2 through host microRNAs (miRNAs) that can reduce viral gene expression to inhibit virus entry and replication. Methods: Using different algorithms in TargetScan, DIANA, ENCORI and miRWalk databases, the potential microRNAs were identified that target ACE2. Then, a score table was prepared from the candidate microRNAs, based on the affinity of the seed region of microRNAs and the 3`-UTR region of the ACE2 gene. Finally, microRNAs with higher scores were chosen as candidates for practical analysis. Results: The results of Bioinformatical analysis showed that Has-miR-200c-3p, Has-miR-29a, Has-miR-29c, and Has-miR-942 are most likely to inhibit ACE2. These microRNAs are the most potent factors that might be affected on ACE2 during virulence. Conclusion: It seems that ACE2 is under the control of the miR-200c-3p and plays a crucial role in the pathophysiology process. Therefore, this microRNA can be considered as a suitable new candidate for experimental evaluation.

2020 ◽  
Vol 26 (40) ◽  
pp. 5089-5099 ◽  
Author(s):  
Irene Simonetta ◽  
Antonino Tuttolomondo ◽  
Mario Daidone ◽  
Salvatore Miceli ◽  
Antonio Pinto

: Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, predominantly globotriaosylsphingosine (Gb3) in lysosomes, as well as other cellular compartments of several tissues, causing multi-organ manifestations (acroparesthesias, hypohidrosis, angiokeratomas, signs and symptoms of cardiac, renal, cerebrovascular involvement). Pathogenic mutations lead to a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA). In the presence of high clinical suspicion, a careful physical examination and specific laboratory tests are required. Finally, the diagnosis of Fabry’s disease is confirmed by the demonstration of the absence of or reduced alpha-galactosidase A enzyme activity in hemizygous men and gene typing in heterozygous females. Measurement of the biomarkers Gb3 and Lyso Gb3 in biological specimens may facilitate diagnosis. The current treatment of Anderson-Fabry disease is represented by enzyme replacement therapy (ERT) and oral pharmacological chaperone. Future treatments are based on new strategic approaches such as stem cell-based therapy, pharmacological approaches chaperones, mRNA therapy, and viral gene therapy. : This review outlines the current therapeutic approaches and emerging treatment strategies for Anderson-Fabry disease.


2006 ◽  
Vol 80 (1) ◽  
pp. 192-200 ◽  
Author(s):  
Ashley L. Steed ◽  
Erik S. Barton ◽  
Scott A. Tibbetts ◽  
Daniel L. Popkin ◽  
Mary L. Lutzke ◽  
...  

ABSTRACT Establishment of latent infection and reactivation from latency are critical aspects of herpesvirus infection and pathogenesis. Interfering with either of these steps in the herpesvirus life cycle may offer a novel strategy for controlling herpesvirus infection and associated disease pathogenesis. Prior studies show that mice deficient in gamma interferon (IFN-γ) or the IFN-γ receptor have elevated numbers of cells reactivating from murine gammaherpesvirus 68 (γHV68) latency, produce infectious virus after the establishment of latency, and develop large-vessel vasculitis. Here, we demonstrate that IFN-γ is a powerful inhibitor of reactivation of γHV68 from latency in tissue culture. In vivo, IFN-γ controls viral gene expression during latency. Importantly, depletion of IFN-γ in latently infected mice results in an increased frequency of cells reactivating virus. This demonstrates that IFN-γ is important for immune surveillance that limits reactivation of γHV68 from latency.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 542
Author(s):  
Eduardo I. Tognarelli ◽  
Antonia Reyes ◽  
Nicolás Corrales ◽  
Leandro J. Carreño ◽  
Susan M. Bueno ◽  
...  

Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.


2021 ◽  
Vol 22 (11) ◽  
pp. 5545
Author(s):  
Annika P. Schnell ◽  
Stephan Kohrt ◽  
Andrea K. Thoma-Kress

Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.


Intervirology ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 88-95
Author(s):  
Bahar Sadegh Ehdaei ◽  
Ahmad Pirouzmand ◽  
Mehdi Shabani ◽  
Arezoo Mirzaei ◽  
Sharareh Moghim

<b><i>Introduction:</i></b> Herpes simplex viruses (HSVs) are widely distributed in the human population. HSV type 1 (HSV-1) is responsible for a spectrum of diseases, ranging from gingivostomatitis to keratoconjunctivitis, and encephalitis. The HSVs establish latent infections in nerve cells, and recurrences are common. Their frequent reactivation in elderly and immunosuppressed patients causes serious health complications. <b><i>Objectives:</i></b> Due to the growing resistance to its main drug, acyclovir, alternative treatments with different mechanisms of action are required. MicroRNAs regulate host and viral gene expression posttranscriptionally. Previous studies reported that mir-101-2 expression has widely participated in the regulation of HSV-1 replication. In this study, we investigate the effect of hsa-miR-101-1 in the replication of HSV-1. <b><i>Methods:</i></b> We found that transfection of miR-101-1 into HeLa cells could reduce effectively HSV-1 replication using plaque assay and real-time PCR methods. <b><i>Results:</i></b> We showed that overexpression of miR-10-1 produced less viral progeny and manifested a weaker cytopathic effect, without affecting cell viability. <b><i>Discussion/Conclusion:</i></b> This result can give us new insights into the control of HSV-1 infections.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 601-609 ◽  
Author(s):  
Zsolt Tallóczy ◽  
Rebecca Mazar ◽  
Denise E Georgopoulos ◽  
Fausto Ramos ◽  
Michael J Leibowitz

Abstract The cytoplasmically inherited [KIL-d] element epigenetically regulates killer virus gene expression in Saccharomyces cerevisiae. [KIL-d] results in variegated defects in expression of the M double-stranded RNA viral segment in haploid cells that are “healed” in diploids. We report that the [KIL-d] element is spontaneously lost with a frequency of 10−4–10−5 and reappears with variegated phenotypic expression with a frequency of ≥10−3. This high rate of loss and higher rate of reappearance is unlike any known nucleic acid replicon but resembles the behavior of yeast prions. However, [KIL-d] is distinct from the known yeast prions in its relative guanidinium hydrochloride incurability and independence of Hsp104 protein for its maintenance. Despite its transmissibility by successive cytoplasmic transfers, multiple cytoplasmic nucleic acids have been proven not to carry the [KIL-d] trait. [KIL-d] epigenetically regulates the expression of the M double-stranded RNA satellite virus genome, but fails to alter the expression of M cDNA. This specificity remained even after a cycle of mating and meiosis. Due to its unique genetic properties and viral RNA specificity, [KIL-d] represents a new type of genetic element that interacts with a viral RNA genome.


Sign in / Sign up

Export Citation Format

Share Document