scholarly journals In vitro evaluation of selligueain A effects on the proinflammatory mediators production in RAW264.7 murine macrophages

2021 ◽  
Vol 10 (3) ◽  
pp. 313-318
Author(s):  
Deden Winda Suwandi ◽  
Tina Rostnawati ◽  
Muchtaridi Muchtaridi ◽  
Anas Subarnas

Introduction: Selligueain A derived from the roots of Polypodium feei was shown to have anti-inflammatory activity, which was tested in vivo on the rats’ paw edema induced by carrageenan. The aim of this study was to evaluate the anti-inflammatory mechanism of selligueain A in vitro against the production of pro-inflammatory mediators. Methods: In this study, RAW264.7 cells were used as an inflammatory cell model, and observations were made on the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and tumour necrosis factor-α (TNF-α). The NO concentration was measured by the Griess reaction, and the iNOS enzyme and the TNF-α concentrations were determined by the ELISA method. Cell viability was assessed by the [3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) test. Results: Selligueain A at concentrations of 100 and 150 µM suppressed the production of NO, iNOS, and TNF-α in RAW264.7 cells stimulated by lipopolysaccharide (LPS). The concentration of 150 µM showed the highest inhibition of NO, iNOS, and TNF-α mediators with the percentage inhibition of 64.85, 55.01, and 48.54%, respectively. Conclusion: This study shows that selligueain A has anti-inflammatory activity through inhibition of NO, iNOS, and TNF-α production in RAW264.7 macrophage cells.

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2068 ◽  
Author(s):  
Myoung-Sook Shin ◽  
Sang-Back Kim ◽  
Jaemin Lee ◽  
Han-Seok Choi ◽  
Jimin Park ◽  
...  

Aucklandia lappa DC., Terminalia chebula Retz and Zingiber officinale Roscoe have been traditionally used in east Asia to treat chronic diarrhea and abdominal pain. This study aimed to evaluated the anti-inflammatory activity of KM1608, which is composed of three natural herbs in a mouse model of dextran sodium sulfate (DSS)-induced ulcerative colitis. The anti-inflammatory activity and underlying mechanism were assessed in vitro using LPS-treated RAW264.7 cells. The in vivo effect of KM1608 on DSS-induced colitis was examined after oral administration in mice. KM1608 significantly inhibited the inflammatory mediators such as nitric oxide, interleukin (IL)-6, monocyte chemotactic protein 1 (MCP-1) and tumor necrosis factor (TNF)-α in LPS-treated RAW264.7 cells. The inhibitory effect of KM1608 was attributed to the reduction of Akt phosphorylation in the LPS-treated cells. In the mouse model, oral administration of KM1608 significantly improved DSS-induced colitis symptoms, such as disease activity index (DAI), colon length, and colon weight, as well as suppressed the expression of IL-6, TNF-α, and myeloperoxidase (MPO) in the DSS-induced colitis tissues. Taken together, KM1608 improved colitis through the regulation of inflammatory responses, suggesting that KM1608 has potential therapeutic use in the treatment of inflammatory diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Ji Young Cha ◽  
Ji Yun Jung ◽  
Jae Yup Jung ◽  
Jong Rok Lee ◽  
Il Je Cho ◽  
...  

Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α)) and nuclear factor-kappa B (NF-κB) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF-κB, and MAPKs as well as production of prostaglandin E2(PGE2), nitric oxide (NO), IL-6, and TNF-αinduced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF-α. Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWSin vitroandin vivo.


2015 ◽  
Vol 43 (02) ◽  
pp. 269-287 ◽  
Author(s):  
Kun-Cheng Li ◽  
Yu-Ling Ho ◽  
Guan-Jhong Huang ◽  
Yuan-Shiun Chang

Lobelia chinensis Lour (LcL) is a popular herb that has been widely used as folk medicine in China for the treatment of fever, lung cancer, and inflammation for hundreds of years. Recently, several studies have shown that the anti-inflammatory properties were correlated with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from the NF-κB pathway. The aim of this study was to evaluate the anti-oxidative and anti-inflammatory activities of L. chinensis. Both suppressive activities on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and the acute rat lung injury model in vivo were studied. The results showed that the methanol extract of LcL and its fractions within the range of 62.5–250 μg/mL did not induce cytotoxicity (p < 0.001). The ethyl acetate fraction of LcL showed better NO inhibition activity than other fractions. On the other hand, the Lc-EA (62.5, 125, 250 mg/kg) pretreated rats showed a decrease in the pro-inflammatory cytokines (TNF-α, IL-β, IL-6) and inhibited iNOS, COX-2 expression through the NF-κB pathway. These results suggested that L. chinensis exhibited an anti-inflammatory effect through the NF-κB pathways.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 611
Author(s):  
Chae Young Lee ◽  
Han Gyung Kim ◽  
Sang Hee Park ◽  
Seok Gu Jang ◽  
Kyung Ja Park ◽  
...  

Alverine, a smooth muscle relaxant, is used to relieve cramps or spasms of the stomach and intestine. Although the effects of alverine on spontaneous and induced contractile activity are well known, its anti-inflammatory activity has not been fully evaluated. In this study, we investigated the anti-inflammatory effects of alverine in vitro and in vivo. The production of nitric oxide (NO) in RAW264.7 cells activated by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly (I:C)) was reduced by alverine. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) was also dose-dependently inhibited by treatment with alverine. In reporter gene assays, alverine clearly decreased luciferase activity, mediated by the transcription factor nuclear factor κB (NF-κB) in TIR-domain-containing adapter-inducing interferon-β (TRIF)- or MyD88-overexpressing HEK293 cells. Additionally, phosphorylation of NF-κB subunits and upstream signaling molecules, including p65, p50, AKT, IκBα, and Src was downregulated by 200 μM of alverine in LPS-treated RAW264.7 cells. Using immunoblotting and cellular thermal shift assays (CETSAs), Src was identified as the target of alverine in its anti-inflammatory response. In addition, HCl/EtOH-stimulated gastric ulcers in mice were ameliorated by alverine at doses of 100 and 200 mg/kg. In conclusion, alverine reduced inflammatory responses by targeting Src in the NF-κB pathway, and these findings provide new insights into the development of anti-inflammatory drugs.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zunpeng Shu ◽  
Na Xing ◽  
Qiuhong Wang ◽  
Xinli Li ◽  
Bingqing Xu ◽  
...  

This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract ofP. Alkekengi(50-EFP) has antibacterial and/or anti-inflammatory activity bothin vivoandin vitroand to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activityin vitroand efficacyin vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2(PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activityin vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities bothin vitroandin vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities.


2013 ◽  
Vol 41 (04) ◽  
pp. 927-943 ◽  
Author(s):  
Sushruta Koppula ◽  
Wan-Jae Kim ◽  
Jun Jiang ◽  
Do-Wan Shim ◽  
Na-Hyun Oh ◽  
...  

Carpesium macrocephalum (CM) Fr. et Sav. (Compositae) has been used in Chinese folk medicine as an analgesic, hemostatic, antipyretic, and to suppress inflammatory conditions. In the present study we aimed to provide scientific evidence for the anti-inflammatory properties of CM extract and evaluate the intrinsic mechanisms involved in both in vitro and in vivo experimental models. In in vitro findings, CM significantly inhibited the LPS-stimulated release of proinflammatory mediators such as nitric oxide, tumor necrosis factor-alpha, prostaglandin E2, and interleukin-6 in RAW264.7 macrophages in a concentration-dependent fashion. The attenuation of inflammatory responses in LPS-activated RAW264.7 cells by CM was closely associated with the suppression of nuclear factor-kappa B (NF-κB) phosphorylation, IκB-α degradation, and phosphorylation of Akt. CM treatment also attenuated the phosphorylation of STAT through TRIF dependent pathways in LPS-activated RAW264.7 cells. In vivo studies revealed that CM extract concentration dependently suppressed the acetic acid-induced vascular permeability in mice. Considering the data obtained regulation of multiple signaling mechanisms involving TRIF and Akt/NF-κB pathways might be responsible for the potent anti-inflammatory action of CM, substantiating its traditional use in inflammatory diseases.


2021 ◽  
Author(s):  
Ravindra Jagannath Waghole ◽  
Ashwini Vivek Misar ◽  
Neha Shashikant Kulkarni ◽  
Feroz Khan ◽  
Dattatraya Gopal Naik ◽  
...  

Abstract The severity and perseverance of the inflammation have been demonstrated in many health conditions. The limitations of existing medications, propose the need for newer alternative anti-inflammatory medications. In our earlier studies, we demonstrated the topical anti-inflammatory potential of crude ethanolic extract of Tetrastigma sulcatum leaves and its fractions. In the present study, we further explored anti-inflammatory activity of T. sulcatum extract, fractions, pure compound and its derivatives using in vitro and in vivo bioassay techniques. We attempted to isolate a pure compound from leaf extract and was identified as Friedelan-3β-ol (CI) and its derivatives Friedelinol acetate (C II) and Friedelinol methyl ether (C III) were synthesized. Treatment with crude extract and its fractions demonstrated a significant reduction in the mRNA expression levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and nitric oxide (NO) production in LPS-stimulated inflammation in RAW 264.7 cells. Likewise, compounds CI, CII and CIII showed a similar pattern of significant inhibition of proinflammatory cytokines and NO production. In vivo study in Carrageenan induced paw-inflammatory mice model demonstrated reduced paw oedema and proinflammatory cytokines levels in a dose-dependent manner upon treatment of extract, its fractions, pure compound (CI), and their derivatives (CII and CIII.). The docking study showed all the compounds (CI, CII and CIII) share common residues with Dexamethasone. TNF- α exhibited the most interacting residues with the compounds. The present study confirmed the T. sulcatum ’s anti-inflammatory activity, suggesting Friedelan-3β-ol as an active component in a crude extract.


2013 ◽  
Vol 41 (05) ◽  
pp. 1109-1123 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Yun-Jeong Jeong ◽  
Tae-Sung Lee ◽  
Yoon-Yub Park ◽  
Whi-Gun Chae ◽  
...  

In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Han Gyung Kim ◽  
Subin Choi ◽  
Jongsung Lee ◽  
Yo Han Hong ◽  
Deok Jeong ◽  
...  

Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 300
Author(s):  
Moo Rim Kang ◽  
Sun Ah Jo ◽  
Hyunju Lee ◽  
Yeo Dae Yoon ◽  
Joo-Hee Kwon ◽  
...  

Scytonemin is a yellow-green ultraviolet sunscreen pigment present in different genera of aquatic and terrestrial blue-green algae, including marine cyanobacteria. In the present study, the anti-inflammatory activities of scytonemin were evaluated in vitro and in vivo. Topical application of scytonemin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear swelling in BALB/c mice. The expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) was also suppressed by scytonemin treatment in the TPA-treated ear of BALB/c mice. In addition, scytonemin inhibited lipopolysaccharide (LPS)-induced production of TNF-α and nitric oxide (NO) in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expressions of TNF-α and iNOS were also suppressed by scytonemin in LPS-stimulated RAW 264.7 cells. Further study demonstrated that LPS-induced NF-κB activity was significantly suppressed by scytonemin treatment in RAW 264.7 cells. Our results also showed that the degradation of IκBα and nuclear translocation of the p65 subunit were blocked by scytonemin in LPS-stimulated RAW 264.7 cells. Collectively, these results suggest that scytonemin inhibits skin inflammation by blocking the expression of inflammatory mediators, and the anti-inflammatory effect of scytonemin is mediated, at least in part, by down-regulation of NF-κB activity. Our results also suggest that scytonemin might be used as a multi-function skin care ingredient for UV protection and anti-inflammation.


Sign in / Sign up

Export Citation Format

Share Document