Moringa Fruit Inhibits LPS-Induced NO/iNOS Expression through Suppressing the NF-κB Activation in RAW264.7 Cells

2013 ◽  
Vol 41 (05) ◽  
pp. 1109-1123 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Yun-Jeong Jeong ◽  
Tae-Sung Lee ◽  
Yoon-Yub Park ◽  
Whi-Gun Chae ◽  
...  

In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2005 ◽  
Vol 33 (03) ◽  
pp. 415-424 ◽  
Author(s):  
Eunkyue Park ◽  
Susan Kum ◽  
Chuanhua Wang ◽  
Seung Yong Park ◽  
Bo Sook Kim ◽  
...  

Houttuynia cordata Thunb. (HC), Glycyrrhiza uralensis Fischer (GU), Forsythia suspense (Thunb.) Vahl (FS), and Lonicera japonica Thunb. (LJ) are Chinese herbs known to possess anti-inflammatory properties. The effects of aqueous extracts of these herbs on the production of the pro-inflammatory mediators, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) were examined in an activated macrophage-like cell line, RAW 264.7 cells. Aqueous extracts from FS at 0.0625–2.0 mg/ml inhibited in vitro production of NO and secretion of TNF-α in a dose-dependent manner. FS at 1.0–2.0 mg/ml and 0.125–2.0 mg/ml significantly inhibited NO production and TNF-α, respectively. An extract of LJ demonstrated potent inhibition of both NO production and TNF-α secretion in a dose-dependent manner. An aqueous extract from HC inhibited NO production in a dose-dependent manner, but minimally (approximately 30%) inhibited TNF-α secretion at 0.0625 and 0.125 mg/ml. In contrast, an aqueous extract of GU had a minimal effect on both the production of NO and the secretion of TNF-α. Viability of cells at all concentrations studied was unaffected as determined by MTT cytotoxicity assay and trypan blue dye exclusion. These results suggest that aqueous extracts from FS, LJ and HC have anti-inflammatory actions as measured by inhibition of NO production and/or TNF-α secretion.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Wan-Jung Lu ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
...  

Objective. Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods. The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results. AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion. The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.


Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 480
Author(s):  
Weerawan Rod-in ◽  
Chaiwat Monmai ◽  
Il-sik Shin ◽  
SangGuan You ◽  
Woo Jung Park

Total lipids were extracted from sandfish (Arctoscopus japonicus), and then they were separated into the following three lipid fractions: neutral lipids, glycolipids, and phospholipids. In this study, we analyzed the lipid fractions of A. japonicus eggs and we determined their anti-inflammatory activity in RAW264.7 macrophage cells. In these three lipid-fractions, the main fatty acids were as follows: palmitic acid (16:0), oleic acid (18:1n-9), docosahexaenoic acid (DHA, 22:6n-3), and eicosapentaenoic acid (EPA, 20:5n-3). Among the lipid fractions, phospholipids showed the highest concentration of DHA and EPA (21.70 ± 1.92 and 18.96 ± 1.27, respectively). The three lipid fractions of A. japonicus significantly suppressed the production of NO in macrophages. Moreover, they also significantly inhibited the expression of iNOS, COX-2, IL-6, IL-1β, and TNF-α, in a dose-dependent manner. Furthermore, the lipid fractions of A. japonicus suppressed the nuclear translocation of NF-κB p65 subunits in a dose-dependent manner. In addition, they attenuated the activation of MAPKs (p38, ERK1/2, and JNK) phosphorylation in LPS-stimulated RAW264.7 cells. These results indicate that all the lipid fractions of A. japonicus exert anti-inflammatory activity by suppressing the activation of NF-κB and MAPK pathways. Therefore, the lipid fractions of A. japonicus might be potentially used as anti-inflammatory agents.


2021 ◽  
Vol 16 (4) ◽  
pp. 1934578X2110052
Author(s):  
Eun-Hee Kim ◽  
Jin-Cheon Kim ◽  
Hye Kyung Kim ◽  
Young-Ah Jang

Polygonum cuspidatum (PC) has been used as traditional Korean medicine to treat various diseases including asthma, hypertension, cancer, and arteriosclerosis. In this study, we assessed the antibacterial and anti-inflammatory effects of PC ethanol extract. Persistent antibacterial activity against Streptococcus mutans for up to 23 days was observed when the extract was used at a concentration of 10 mg/mL. The minimum inhibitory concentration of PC against S. mutans was 0.2 mg/mL and the minimum bactericidal concentration was 10 mg/mL. We compared the antimicrobial activities of S. mutagens cultured with or without PC. Bacterial activity was observed only in the group where RE was not added. The anti-inflammatory effect of PC on RAW264.7 cells was assessed using the MTT assay; changes in nitric oxide (NO) production and inflammatory cytokine levels (tumor necrosis factor [TNF]-α and interleukin [IL]-6) were measured in the presence of PC. In lipopolysaccharide-induced RAW264.7 cells, PC inhibited NO production by 68.6% when used at a concentration of 50 µg/mL. The expression of TNF-α and IL-6 was reduced by PC in a concentration-dependent manner. These results suggest that the ethanol extract of PC could be used as a mouthwash component with antibacterial and anti-inflammatory effects.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xi Tan ◽  
Yuan-Lai Wang ◽  
Xiao-Lu Yang ◽  
Dan-Dan Zhang

Artemisia anomalaS. Moore has been widely used in China to treat inflammatory diseases for hundreds of years. However, mechanisms associated with its anti-inflammatory effect are not clear. In this study, we prepared ethyl acetate, petroleum ether,n-BuOH, and aqueous extracts from ethanol extract ofArtemisia anomalaS. Moore. Comparing anti-inflammatory effects of these extracts, we found that ethyl acetate extract of this herb (EAFA) exhibited the strongest inhibitory effect on nitric oxide (NO) production in LPS/IFNγ-stimulated RAW264.7 cells. EAFA suppressed the production of NO in a time- and dose-dependent manner without eliciting cytotoxicity to RAW264.7 cells. To understand the molecular mechanism underlying EAFA’s anti-inflammatory effect, we showed that EAFA increased total cellular anti-oxidant capacity while reducing the amount of inducible nitric oxide synthase (iNOS) in stimulated RAW264.7 cells. EAFA also suppressed the expression of IL-1βand IL-6, whereas it elevates the level of heme oxygenase-1. These EAFA-induced events were apparently associated with NF-κB and MAPK signaling pathways because the DNA binding activity of p50/p65 was impaired and the activities of both ERK and JNK were decreased in EFEA-treated cells comparing to untreated cells. Our findings suggest that EAFA exerts its anti-inflammatory effect by inhibiting the expression of iNOS.


Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 217 ◽  
Author(s):  
Chih-Hsuan Hsia ◽  
Marappan Velusamy ◽  
Thanasekaran Jayakumar ◽  
Yen-Jen Chen ◽  
Chih-Wei Hsia ◽  
...  

Several studies have reported that metal complexes exhibit anti-inflammatory activities; however, the molecular mechanism is not well understood. In this study, we used a potent ruthenium (II)-derived compound, [Ru(η6-cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), to investigate the molecular mechanisms underlying the anti-inflammatory effects against lipopolysaccharide (LPS)-induced macrophage activation and liver injury in mice. Treating LPS-stimulated RAW 264.7 cells with TQ-6 suppressed nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner. The LPS-induced expression of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were reduced in TQ-6-treated cells. TQ-6 suppressed, LPS-stimulated p38 MAPK phosphorylation, IκBα degradation, and p65 nuclear translocation in cells. Consistent with the in vitro studies, TQ-6 also suppressed the expression of iNOS, TNF-α, and p65 in the mouse model with acute liver injury induced by LPS. The present study showed that TQ-6 could protect against LPS-induced in vitro inflammation in macrophage and in vivo liver injury in mice, and suggested that NF-κB could be a promising target for protecting against LPS-induced inflammation and liver injury by TQ-6. Therefore, TQ-6 can be a potential therapeutic agent for treating inflammatory diseases.


2013 ◽  
Vol 3 (6) ◽  
pp. 242 ◽  
Author(s):  
Tadahiro Etoh ◽  
Yong P. Kim ◽  
Masahiko Hayashi ◽  
Michiko Suzawa ◽  
Shiming Li ◽  
...  

Background: Formulated Citrus Peel Extract (GL) made from the peels of six citrus fruits available in Japan, namely navel oranges, citrus hassaku, citrus limon, citrus natsudaidai, citrus miyauchi and satsuma, was initially developed as a cosmetic product to protect skin from UV irradiation. Anecdotal evidences of anti-cancer property of GL have been reported by consumers based on the cases such as topical application for melanoma, and oral ingestion for prostate, lung and liver cancers. Those anecdotal reports stimulated us to investigate anti-tumorigenesis activity of GL. In the previous study, we reported that the topical application of GL inhibited DMBA/TPA-induced skin tumor formation by decreasing inflammatory gene parameters.Objective: In this study, we mainly investigated the effect of GL on translocation of NF-kB together with production of nitric-oxide and TNF-α induced by LPS in RAW 264.7 cells.Results: This investigation showed that GL decreased the release of TNF-α and nitric oxide from macrophage RAW264.7 cells stimulated by LPS in a dose-dependent manner. In addition, GL suppressed the expression of iNOS and nuclear translocation of NF-kB in RAW264.7 cells, inhibited the degradation of IκB-α, and scavenged hydroxyl radicals (DMPO/OH adduct) in vitro.Conclusions: Our findings suggest that GL suppresses the inflammation in vitro, and exerts chemopreventive activity through the inhibition of production of TNF-α and iNOS proteins due to the inhibition of nuclear translocation of NF-kB and oxidative stress. GL appears to be a novel functional natural product capable of preventing inflammation and inflammation-associated tumorigenesis. Keywords: GL, Citrus peel extract, anti-inflammation, Nitric oxide, iNOS, NF-kB, TNF-α


2021 ◽  
Vol 10 (3) ◽  
pp. 313-318
Author(s):  
Deden Winda Suwandi ◽  
Tina Rostnawati ◽  
Muchtaridi Muchtaridi ◽  
Anas Subarnas

Introduction: Selligueain A derived from the roots of Polypodium feei was shown to have anti-inflammatory activity, which was tested in vivo on the rats’ paw edema induced by carrageenan. The aim of this study was to evaluate the anti-inflammatory mechanism of selligueain A in vitro against the production of pro-inflammatory mediators. Methods: In this study, RAW264.7 cells were used as an inflammatory cell model, and observations were made on the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and tumour necrosis factor-α (TNF-α). The NO concentration was measured by the Griess reaction, and the iNOS enzyme and the TNF-α concentrations were determined by the ELISA method. Cell viability was assessed by the [3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) test. Results: Selligueain A at concentrations of 100 and 150 µM suppressed the production of NO, iNOS, and TNF-α in RAW264.7 cells stimulated by lipopolysaccharide (LPS). The concentration of 150 µM showed the highest inhibition of NO, iNOS, and TNF-α mediators with the percentage inhibition of 64.85, 55.01, and 48.54%, respectively. Conclusion: This study shows that selligueain A has anti-inflammatory activity through inhibition of NO, iNOS, and TNF-α production in RAW264.7 macrophage cells.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document