scholarly journals The Igaliko nepheline syenite complex. General description

1970 ◽  
Vol 85 ◽  
pp. 1-115
Author(s):  
C.H Emeleus ◽  
W.T Harry

The Igaliko Nepheline Syenite Complex is in the Julianehåb District of Southern Greenland, at about 61°N and 45°W. The syenites and related rocks cover an area of about 450 square kilometres in the country between Tunugdliarfik and Igaliko Fjord on the west, and the Inland lce to the east. The Complex belongs to the group of Precambrian igneous intrusions, comprising the Gardar 19neous Province, exposed in the country around Ivigtut and Julianehåb. The Complex comprises four distinct intrusive centres, termed, in order of decreasing age, the Motzfeldt Centre, the North Qoroq Centre, the South Qoroq Centre and the Igdlerfigssalik Centre. With these are associated a number of small satellitic syenites which generally pre-date the rocks of the main centres of activity and numerous alkali trachyte and Big Feldspar Dykes, which, for the most part, belong to the regional Mid-Gardar swarms. The satellitic syenites and the three earlier syenite centres are earlier than the Mid-Gardar dykes swarms. Three members of the Igdlerfigssalik Centre are also earlier than the dykes but the four late intrusions in this centre cut the majority of the dykes. Each centre is made up of several intrusive members; including satellitic intrusions, the Complex consists of 28 separate units as well as several small dykelike bodies of syenogabbro and alkali gabbro. Within each centre the individual intrusions have arcuate, steep-sided outcrops with discordant, intrusive relations towards earlier members although, occasionally, there is evidence that petrographically and texturally distinct syenites were intruded at only short intervals thus possibly representing rapid pulses of magma from the same source. The mineralogy of the syenites is usually simple: perthitic alkali feldspar, nepheline and alkali pyroxene are the dominant minerals; these are accompanied by fayalitic olivine, alkali amphibole, biotite, magnetite-rich opaques, analcite, natrolite and apatite. Pegmatites are not numerous, but the Complex does contain the celebrated Narssârssuk pegmatite which lies within the outer member of the later group of syenites in the Igdlerfigssalik Centre. Except where locally contaminated by assimilation of country rocks, the Igaliko syenites are all nepheline bearing; the commonest type is foyaite. The quartz syenite – alkali gabbro intrusive of Klokken, about 5 km south of the Complex, is not regarded as a satellite. Igneous layering and mineral lamination are common internal structures in the syenites. These generally define concentric, inward-dipping structures within individual intrusions; the frequency with which the well-developed internal structures in one syenite may be sharply truncated by a later syenite indicates that, in some instances, an appreciable amount of time must have elapsed between successive intrusions. The structures found in the Igaliko syenites are identical with those described from other layered alkaline, basic and ultrabasic intrusions. 19neous activity within the Complex began at least as early as the Mid-Gardar. Syenites of the earliest centre intrude sediments, agglomerates and lavas belonging to the Eriksfjord Formation and also cut a dolerite dyke which may belong to the relatively early Gardar dyke swarm. The early Østfjordsdal Syenite (pre-South Qôroq Centre) cuts a small swarm of nepheline porphyry dykes. The dykes of the Mid-Gardar swarms maintain their regional WSW-ENE strike throughout most of the Complex except near Qôroq where there is a marked swing into a more northerly direction. Two major sinistral faults, striking ESE and east-west, displace the earlier centres of the Complex and the dykes. The faults are members of a regional set developed throughout southern Greenland. Since no alkaline dyke cuts the younger of the two faults, it is considered likely that the 2 km sinistral transcurrent movement of this fault post-dates the late syenites in the Igdlerfigssalik Centre; the late syenites are cut by a number of alkaline dykes petrographically identical with those displaced by the sinistral faults. Thus, the latest syenites at Igaliko may be of slightly earlier date than the later members of the Ilímaussaq Intrusion and the Central Complex of Tugtutôq, although still belonging to the Late-Gardar group of intrusions.

2020 ◽  
Vol 67 ◽  
pp. 107-146
Author(s):  
Paul Martin Holm ◽  
Niels-Ole Prægel

The Kærven Syenite Complex (KSC) is one of the oldest felsic intrusions in the Tertiary East Greenland province. Here we update our previous description of the KSC and supply a greatly expanded and comprehensive geochemical dataset. New data allow us to present a more detailed petrogenetic model for the evolution of the KSC and to investigate the geochemical characteristics of igneous cumulates subjected to loss and, occasionally, replacement of residual liquid. The KSC comprises eleven mappable units that generally young westwards. Rock types range from quartz syenite to quartz alkali feldspar syenite and alkali feldspar granite. Individual intrusive units are relatively narrow and steep-sided and are collectively suggested to represent a ring dyke complex. Basement gneiss and gabbro host rocks have locally contaminated the oldest quartz syenite KSC unit, but most of the main part of the complex escaped significant influence from host rocks. A late suite of E–W to NE–SW striking peralkaline dykes of trachytic to phonolitic compositions intrude the KSC. Compositions of the KSC rocks span a considerable range in SiO2, 59–73 wt%. Concentrations of several elements vary widely for a given SiO2 (especially at SiO2 < 66 wt%), and variation diagrams do not suggest a single model for the evolution of the units of the complex. A cumulative origin is envisaged for several KSC units. Geochemical modelling suggests that KSC magmas were derived from more than one primary magma, and that the complex evolved through a four-stage process: fractional crystallisation in precursory magma chambers was followed by final emplacement of each unit, establishment of a crystal/melt mush, expulsion of part of the residual melt and, finally, crystallisation of the remaining melt. Trace element disequilibria between alkali feldspar and host rocks in two closely associated quartz alkali feldspar syenite units indicate that highly evolved residual melt was replaced by a less evolved melt phase. Modelling of potential parent melt compositions to the Kærven magmas suggests an origin not in the Iceland plume asthenosphere, but rather in a moderately enriched source, possibly in the continental lithosphere. The course of melt evolution by fractional crystallisation is indicated to have taken place in magma chambers at depth, and repeated rise of magma into the upper crustal magma chambers and crystallisation there formed the KSC. Based on our survey of published geochemical data, the inferred parental magmas seem to have few equivalents in the North Atlantic Igneous Province and may have been generated mainly from melting of enriched dry lithospheric mantle of possibly Archaean age.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 557
Author(s):  
Byung-Choon Lee ◽  
Weon-Seo Kee ◽  
Uk-Hwan Byun ◽  
Sung-Won Kim

In this study, petrological, structural, geochemical, and geochronological analyses of the Statherian alkali feldspar granite and porphyritic alkali feldspar granite in the southwestern part of the Korean Peninsula were conducted to examine petrogenesis of the granitoids and their tectonic setting. Zircon U-Pb dating revealed that the two granites formed around 1.71 Ga and 1.70–1.68 Ga, respectively. The results of the geochemical analyses showed that both of the granites have a high content of K2O, Nb, Ta, and Y, as well as high FeOt/MgO and Ga/Al ratios. Both granites have alkali-calcic characteristics with a ferroan composition, indicating an A-type affinity. Zircon Lu-Hf isotopic compositions yielded negative εHf(t) values (−3.5 to −10.6), indicating a derivation from ancient crustal materials. Both granite types underwent ductile deformation and exhibited a dextral sense of shear with a minor extension component. Based on field relationships and zircon U-Pb dating, it was considered that the deformation event postdated the emplacement of the alkali feldspar granite and terminated soon after the emplacement of the porphyritic alkali feldspar granite in an extensional setting. These data indicated that there were extension-related magmatic activities accompanying ductile deformation in the southwestern part of the Korean Peninsula during 1.71–1.68 Ga. The Statherian extension-related events are well correlated with those in the midwestern part of the Korean and eastern parts of the North China Craton.


2013 ◽  
Vol 29 ◽  
pp. 1-24 ◽  
Author(s):  
Brian G.J. Upton

The 1300–1140 Ma Gardar period in South Greenland involved continental rifting, sedimentation and alkaline magmatism. The latest magmatism was located along two parallel rift zones, Isortoq–Nunarsuit in the north and the Tuttutooq–Ilimmaasaq–Narsarsuaq zone in the south addressed here. The intrusive rocks crystallised at a depth of troctolitic gabbros. These relatively reduced magmas evolved through marked iron enrichment to alkaline salic differentiates. In the Older giant dyke complex, undersaturated augite syenites grade into sodalite foyaite. The larger, c . 1163 Ma Younger giant dyke complex (YGDC) mainly consists of structureless troctolite with localised developments of layered cumulates. A layered pluton (Klokken) is considered to be coeval and presumably comagmatic with the YGDC. At the unconformity between the Ketilidian basement and Gardar rift deposits, the YGDC expanded into a gabbroic lopolith. Its magma may represent a sample from a great, underplated mafic magma reservoir, parental to all the salic alkaline rocks in the southern rift. The bulk of these are silica undersaturated; oversaturated differentiates are probably products of combined fractional crystallisation and crustal assimilation. A major dyke swarm 1–15 km broad was intruded during declining crustal extension, with decreasing dyke widths and increasing differentiation over time. Intersection of the dyke swarm and E–W-trending sinistral faults controlled the emplacement of at least three central complexes (Narssaq, South Qôroq and early Igdlerfigssalik). Three post-extensional complexes (Tugtutôq, Ilímaussaq and late Igdlerfigssalik) along the former rift mark the end of magmatism at c . 1140 Ma. The latter two complexes have oblate plans reflecting ductile, fault-related strain. The Tugtutôq complex comprises quartz syenites and alkali granites. The Ilímaussaq complex mainly consists of nepheline syenite crystallised from highly reduced, Fe-rich phonolitic peralkaline (agpaitic) magma, and resulted in rocks with very high incompatible element concentrations. Abundant anorthositic xenoliths in the mafic and intermediate intrusions point to a large anorthosite protolith at depth which is considered of critical importance in the petrogenesis of the salic rocks. Small intrusions of aillikite and carbonatite may represent remobilised mantle metasomites. The petrological similarity between Older and Younger Gardar suites implies strong lithospheric control of their petrogenesis. The parental magmas are inferred to have been derived from restitic Ketilidian lithospheric mantle, metasomatised by melts from subducting Ketilidian oceanic crust and by small-scale melt fractions associated with Gardar rifting. There are numerous analogies between the southern Gardar rift and the Palaeogene East African rift.


2017 ◽  
Vol 54 (4) ◽  
pp. 379-392
Author(s):  
David G. Bailey ◽  
Marian Lupulescu ◽  
Jeffrey Chiarenzelli ◽  
Jonathan P. Traylor

Two syenite sills intrude the local Paleozoic strata of eastern New York State and are exposed along the western shore of Lake Champlain. The sills are fine-grained, alkali feldspar syenites and quartz syenites, with phenocrysts of sanidine and albite. The two sills are compositionally distinct, with crossing rare earth element profiles and different incompatible element ratios, which eliminates the possibility of a simple petrogenetic relationship. Zircon extracted from the upper sill yields a U–Pb age of 131.1 ± 1.7 Ma, making the sills the youngest known igneous rocks in New York State. This age is similar to that of the earliest intrusions in the Monteregian Hills of Quebec, >100 km to the north. Sr and Nd radiogenic isotope ratios are also similar to those observed in some of the syenitic rocks of the eastern Monteregian Hills. The Cannon Point syenites have compositions typical of A-type, within-plate granitoids. They exhibit unusually high Ta and Nb concentrations, resulting in distinct trace element signatures that are similar to those of the silicic rocks of the Valles Caldera, a large, rift-related magmatic system. We suggest that the Cannon Point syenites were melts derived primarily by anatexis of old, primitive, lower crustal material in response to Mesozoic rifting and to the intrusion of mantle-derived magmas. The sills indicate that the effects of continental rifting were spatially and temporally extensive, resulting in the reactivation of basement faults in the Lake Champlain Valley hundreds of kilometers west of the active rift boundary, and crustal melting >50 Ma after the initiation of rifting.


2009 ◽  
Vol 46 (3) ◽  
pp. 155-167 ◽  
Author(s):  
Steven W. Denyszyn ◽  
Don W. Davis ◽  
Henry C. Halls

The north–south-trending Clarence Head dyke swarm, located on Devon and Ellesmere Islands in the Canadian High Arctic, has a trend orthogonal to that of the Neoproterozoic Franklin swarm that surrounds it. The Clarence Head dykes are dated by the U–Pb method on baddeleyite to between 716 ± 1 and 713 ± 1 Ma, ages apparently younger than, but within the published age range of, the Franklin dykes. Alpha recoil in baddeleyite is considered as a possible explanation for the difference in ages, but a comparison of the U–Pb ages of grains of equal size from both swarms suggests that recoil distances in baddeleyite are lower than those in zircon and that the Clarence Head dykes are indeed a distinctly younger event within the period of Franklin magmatism. The Clarence Head dykes represent a large swarm tangential to, and cogenetic with, a giant radiating dyke swarm ∼800 km from the indicated source. The preferred mechanism for the emplacement of the Clarence Head dykes is the exploitation of concentric zones of extension around a depleting and collapsing plume source. While the paleomagnetism of most Clarence Head dykes agrees with that of the Franklin dykes, two dykes have anomalous remanence directions, interpreted to be a chemical remanent magnetization carried by pyrrhotite. The pyrrhotite was likely deposited from fluids mobilized southward from the Devonian Ellesmerian Orogeny to the north that used the interiors of the dykes as conduits and precipitated pyrrhotite en route.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 361 ◽  
Author(s):  
Renyu Zeng ◽  
Jianqing Lai ◽  
Xiancheng Mao ◽  
Bin Li ◽  
Jiandong Zhang ◽  
...  

The Alxa block is located in the southwestern margin of the North China Craton. The Paleoproterozoic tectonic evolution, crustal growth and tectonic affinity of the block remain unknown or controversial. The Longshoushan (LS) area is one of the few areas that outcrop Paleoproterozoic to crystalline basement rocks in the Alxa Block. In this study, we preset whole-rock geochemistry, zircon U–Pb geochronology and Lu–Hf isotope data from metagabbro, metadiorite, quartz syenite, granitic leucosome and pegmatoid leucosome in the LS area. These rocks all are enriched in LREE and LILE, and depleted in HREE and HFSE. Eight new LA-ICP-MS zircon U–Pb ages yielded three magmatic ages of 2044 Ma, 2029 Ma and 1940 Ma, and three metamorphic ages of 1891 Ma, 1848 Ma and 1812 Ma. Lu–Hf analyses reveal that the magmatic zircons and anatectic/metamorphic zircons from all the rock types are characterized by positive εHf(t) (−0.16 to 10.89) and variable εHf(t) (−11.21 to 6.24), respectively. Based on the previous studies and our new data, we conclude that the LS area experienced three magmatic events (2.5–2.45 Ga, ~2.1–2.0 Ga and ~1.95–1.91 Ga) and three regional metamorphism/anataxis events (~1.93–1.89 Ga, ~1.86–1.84 Ga and ~1.81 Ga) in Paleoproterozoic. The age–Hf isotope data establishes two main crustal growth events at ~2.9–2.5 Ga and ~2.2–2.0 Ga in the LS area. These data indicate that the LS area experienced intraplate extensional setting in the middle Paleoproterozoic, and continental subduction, collision and exhumation in the late Paleoproterozoic. Combining the geochronological framework and tectonic evolution, we suggest that the Alxa Block is part of the Khondalite Belt.


2016 ◽  
Vol 70 ◽  
pp. 69-82 ◽  
Author(s):  
Santiago N. González ◽  
Gerson A. Greco ◽  
Pablo D. González ◽  
Ana M. Sato ◽  
Eduardo J. Llambías ◽  
...  
Keyword(s):  

1995 ◽  
Vol 412 ◽  
Author(s):  
S. A. Dmitriev ◽  
S. V. Stefanovsky

abstractMineralogical-geochemical investigation of a sample of nepheline syenite (urtite) as a natural analog of final radioactive waste form has been performed. The specimen of urtite consists of nepheline, alkali feldspar, pyroxene, sphene, apatite and minor magnetite and amphibole. As a first approximation, urtite simulates the mineral composition of waste slag produced in a plasma shaft furnace at SIA “Radon”. Determination of chemical compositions of the minerals by electron-probe microanalysis has shown that the main phases that hosted radionuclides and their geochemical analogs are as follows: nepheline (Rb and probably Cs), feldspar (Ba), sphene (Zr, Nb, REE, and actinides) and apatite (Sr, REE, and actinides).


GFF ◽  
2016 ◽  
Vol 138 (1) ◽  
pp. 6-16 ◽  
Author(s):  
Victor Puchkov ◽  
Richard E. Ernst ◽  
Michael A. Hamilton ◽  
Ulf Söderlund ◽  
Nina Sergeeva

2017 ◽  
Vol 75 ◽  
pp. 134-143 ◽  
Author(s):  
Santiago N. González ◽  
Gerson A. Greco ◽  
Ana M. Sato ◽  
Eduardo J. Llambías ◽  
Miguel A.S. Basei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document