scholarly journals Extraction of lignin from wastes of sugarcane bagasse and its utilization as an admixture for Portland cement

NanoNEXT ◽  
2021 ◽  
pp. 13-27
Author(s):  
Darweesh H.H.M

The influence of the prepared carboxy-methylated lignin extracted from sugarcane bagasse was investigated. Results showed that the w/c ratio and also setting times of the blank (L0) were reduced with the lignin content. The heat of hydration, combined water content, bulk density and compressive strength of the blank (L0) slightly increased with increasing of lignin content, but only up to 0.3 % lignin (L5) and then decreased. The free lime content decreased with the lignin content nearly at all hydration times up to 90 days due to the gradual reduction of the cement portion. The total porosity of the blank (L0) reduced gradually with lignin content up to 0.3 % lignin, and then increased with further increase of lignin. The FTIR spectra illustrated that the rate of hydration increased with lignin content. The SEM-EDAX image analysis showed the improved microstructure of cement pastes in presence of carboxy-methylated lignin when compared with that of the blank.

2014 ◽  
Vol 43 (2) ◽  
pp. 104-110 ◽  
Author(s):  
M.S. Mohammed ◽  
A.E.-S.I. Ahmed ◽  
R.M. Osman

Purpose – A try to find some useful applications for some products prepared from agricultural waste by mixing them with cement to act as reinforcement agents. The paper aims to discuss these issues. Design/methodology/approach – Cement was mixed with microcrystalline cellulosic (MCC) fibres prepared from baggase, soaked in mixing water, followed by cubic pastes formation. The mixing was performed using different ratios of MCC; 0.5, 0.75, 1 and 3 per cent. The cement properties were followed at timed intervals, up to 90 days. The initial and final setting times of the pastes were determined. Bulk density, apparent porosity and compressive strength of the harden cement pastes were also identified. The hydration kinetic was followed by identifying free lime ratio and chemically combined water content. The structure of the hard cement pastes was followed by SEM, FTIR, DSC and XRD. Findings – It was noticed that the weight of the prepared cement pastes using MCC was reduced, while the compressive strength was increased. In addition, lower ratios of MCC have shown better results at early ages of hydration and reported higher compressive strength than control. No interaction was reported between the fibres and cement constituents based on the performed analysis. Research limitations/implications – Different types of agricultural wastes can be compared in producing the best type of MCC for the same purpose of this research. Practical implications – This piece of work has suggested a simple way to convert a product prepared from agricultural wastes in a small uniform size to a reinforcement agent to cement. Consuming this type of waste reduces the risks resulting from its burning at some countries such as Egypt. Originality/value – MCC fibres have well-known binding properties and used successfully on wide range in medical applications for tablets production with low costs. These fibres have reduced the pastes weight and increased the compressive strength using low ratios of them. Moreover, there is no indication of a reaction between these fibres and cement constituents.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4197
Author(s):  
Inas A. Ahmed ◽  
Najlaa S. Al-Radadi

Ordinary Portland cement (OPC) production is energy-intensive and significantly contributes to greenhouse gas emissions. One method to reduce the environmental impact of concrete production is the use of an alternative binder, calcium sulfoaluminate cement, which offers lower CO2 emissions and reduces energy consumption for cement production. This article describes the effect of adding nanophases, namely belite, calcium sulfoaluminate, calcium aluminum monosulfate (β-C2S, C4A3S, and C4AS, respectively) on OPC’s properties. These phases are made from nanosubstances such as nano-SiO2, calcium nitrate (Ca(NO3)2), and nano-aluminum hydroxide Al(OH)3 with gypsum (CaSO4·2H2O). The impact of β-C2S, C4A3S, and C4AS nanophases on the capabilities of cements was assessed by batch experimentations and IR, XRD, and DSC techniques. The results showed that the substituting of OPC by nano phases (either 10% C4A3S or 10% C4A3S and 10% β-C2S) reduced setting times, reduced the water/cement ratio and the free-lime contents, and increased the combined water contents as well as compressive strength of the cement pastes. The blends had high early and late compressive strength. The IR, XRD, and DSC analyses of the blends of 10% C4A3S or 10% C4A3S and 10% β-C2S cement displayed an increase in the hydrate products and the presence of monosulfate hydrate. The addition of 10% C4AS or 10% C4AS and 10% β-C2S to OPC reduced the setting times, decreased the W/C ratio, free lime, the bulk density, and increased the chemically-combined water and compressive strength. Overall, the results confirmed that the inclusion of the nanophases greatly enhanced the mechanical and durability properties of the OPCs.


1988 ◽  
Vol 137 ◽  
Author(s):  
H. H. Patel ◽  
P. L. Pratt ◽  
L. J. Parrott

AbstractThe changes in porosity of OPC and an OPC-fly ash blended cement during hydration have been studied at water/solids ratios of 0.35, 0.47 and 0.59, cured for times of up to 1 year at 25°C. The porosity was measured indirectly by methanol exchange and methanol adsorption techniques and, directly, by quantitative image analysis using backscattered electron imaging in the scanning electron microscope. Measurements of porosity and of remaining anhydrous material by image analysis showed good correlation with indirect methods. Measurement of the diffusion of methanol and of the compressive strength were made in parallel with the determination of the porosity during hydration and attempts were made to relate the properties to the microstructure. For both binders the reduction of total porosity with increased reaction was small. The major change in pore structure was the subdivision of coarse pores by gel to form finer pores. Compressive strength and diffusion properties were dominated by the relative volume of coarse pores.


2017 ◽  
Vol 898 ◽  
pp. 1990-1995 ◽  
Author(s):  
Ming Zhang Lan ◽  
Bin Feng Xiang ◽  
Jian Feng Wang ◽  
Xu Dong Zhao ◽  
Xiao Ying Wang

In order to investigate the early hydration behavior of rapid setting and hardening belite sulfoaluminate cements, the methods of X-ray Diffraction, Scanning Electron Microscope, Compressive Strength test and Setting Times test were used to identify and quantify the hydration kinetics and microstructure of this new-found cements in China. The results showed that the main mineral compositions of high belite sulfoaluminate cement clinker included calcium sulfoaluminate (4CaO·3Al2O3·CaSO4), belite (2CaO·SiO2), ferrite phase, free gypsum and free lime. It was found that not only the setting time and compressive strength but also the composition of hydration products were influenced by anhydrite to some extent. Meanwhile, a mass of AFt and AFm generated along with the hydration process at different ages, overlapped, crossed and penetrated through calcium silicate hydrate gel and aluminum oxide to form a relatively dense structure which could contribute to the high strength of cement.


2008 ◽  
Vol 14 (4) ◽  
pp. 269-275 ◽  
Author(s):  
Z’hor Guemmadi ◽  
Musa Resheidat ◽  
Hacéne Houari ◽  
Belkacem Toumi

The effect of substitution of Portland cement by limestone up to 40% as well as its fineness on the physico‐mechanical properties of fresh and hardened cement pastes is studied. The binder was prepared by substitution of cement by limestone filler. Fillers were chosen of various particle sizes and with percentages from 5 to 40. Test results revealed that the replacement of Portland cement by the finest filler of limestone slightly decreases the consistency and the setting times (initial and final). The total porosity decreases and accordingly the compressive strength is improved with the content and fines of limestone. Although limestone has a little accelerating effect on the hydration process of Portland cement, but acts only as a filler reducing the porosity due to its compact structure, in which the compressive strength of the hardened cement paste is enhanced. The XRD and DTA analyses of samples cured up to 28 days showed that this amelioration is due to formation of new hydrated compounds. It is concluded that an addition of finely ground limestone filler only up to 15% gives a better strength. Santrauka Tirtos šviežios ir sukietėjusios cementinės tešlos, kurioje iki 40 % cemento pakeista įvairaus smulkumo maltu kalkakmeniu, savybės. Rišiklis buvo paruoštas dalį cemento pakeitus maltu kalkakmenio užpildu. Užpildo dalelės buvo įvairaus dydžio, o jų kiekis buvo keičiamas nuo 5 % iki 40 %. Tyrimai parodė, kad priedas leidžia sumažinti vandens kiekį, reikalingą tos pačios konsistencijos mišiniui gauti, taip pat cemento rišimosi pradžiai ir pabaigai paankstinti. Sumažėja cementinio akmens suminis poringumas ir atitinkamai padidėja stipris gniuždant cementinio akmens, kuriame yra kalkakmenio priedų. Nors kalkakmenio priedas nedaug pagreitina portlandcemenčio hidratacijos procesą, tačiau veikia kaip užpildas, sutankinantis struktūrą, dėl to labai padidėja sukietėjusio cementinio akmens stipris gniuždant. Bandinių, išlaikytų 28 dienas, rentgenostruktūrinė ir diferencinė terminė analizė parodė, kad pagerėjimas yra dėl susidariusių naujadarų. Apibendrinant galima teigti, kad 15 % malto kalkakmenio priedas turi didžiausią įtaką stiprumo rezultatams.


NanoNEXT ◽  
2021 ◽  
pp. 1-15
Author(s):  
Darweesh H.H.M

Physical, chemical and mechanical properties of high belite cement (HBC) blended with high pulverized fly ash (HPFA) with stable ratio of silica fume (SF) in comparison with Portland cement (OPC) were investigated. Results showed that the water of consistency and setting times (Initial and final) tended to increase with the increase of HPFA content. The bulk density and compressive strength were also improved and enhanced with the increase of HPFS content at all hydration times, but only up to 15 % HPFA, and then decreased with further increase.  However, the total porosity slightly decreased, but started to increase with further increase of >15 % HPFA. The free lime content of the pure OPC and HBC gradually were increased as the hydration times progressed up to 90 days, while those of blended cements increased only up to 7 days and then decreased onward. The results were confirmed by measuring the heat of hydration and ultrasonic pulse velocity for the optimum cement pastes comparing with those of both OPC and HBC. The heat of hydration of the optimum cement pastes was decreased at all hydration times and become lower than those of OPC and HBC. The ultrasonic pulse velocity test (USPV) proved that the uniformity and quality of the matrix of the hardened cement pastes are good with no cracks.


2020 ◽  
Vol 71 (2) ◽  
pp. 252-261
Author(s):  
Carmen-Lidia Oproiu ◽  
Marius-George Parvan ◽  
Georgeta Voicu ◽  
Alina-Ioana Badanoiu ◽  
Roxana Trusca

This research work assesses the influence of a chromium-rich waste (from potassium dichromate manufacture) on the hydration and hardening processes of two types of Portland cements with limestone filler and slag additions. Therefore, mixtures of Portland cement and chromium-rich waste, corresponding to 0.5% wt. and 1% wt. Cr, were prepared and tested. The analyses performed on cement pastes with chromium waste content, showed that chromium immobilization is mainly due to the formation of Ca6Al2Cr3O18�32H2O (CrEt); this compound results by the substitution of [SO4]2- groups from ettringite lattice of with [CrO4]2-. CrEt crystals growth on the surface of clinker particles forms a diffusion barrier which explains longer setting times for cements with chromium content. The increase of chromium content in the studied systems decreases the compressive strength values but these remain above the lower limits imposed for this type of materials. The chromium content in leachates prepared according to the method described in SR EN 12457-2, was well below the legal limit of 70 mg/Kg established by Romanian legislation. A better chromium immobilisation was achieved in the cement with slag content, in good correlation with the nature and amount of formed hydrates.


2020 ◽  
Vol 10 (12) ◽  
pp. 5009-5026 ◽  
Author(s):  
Pawel Sikora ◽  
Didier Lootens ◽  
Maxime Liard ◽  
Dietmar Stephan

AbstractThis study investigates the effects of seawater and nanosilica (3% by weight of cement), on the fresh and hardened properties of cement pastes and mortars produced with two types of low heat cements: Portland pozzolana cement (CEM II) and blast furnace cement (CEM III). The heat of hydration, initial and final setting times, rheological properties, strength development, sorptivity and water accessible porosity of the cement pastes and mortars were determined. The data reveal that cement type has a significant effect on the reaction rate of cement with seawater and nanosilica (NS). Specimens produced with slag-blended cement exhibited a higher cement reaction rate and the composite produced exhibited better mechanical performance, as a result of the additional reaction of alumina rich phases in slag, with seawater. Replacement of freshwater with seawater contributes mostly to a significant improvement of early strength. However, in the case of slag-blended cement, 28 day strength also improved. The incorporation of NS results in additional acceleration of hydration processes, as well as to a decrease in cement setting time. In contrast, the addition of NS results in a noticeable increment in the yield-stress of pastes, with this effect being pronounced when NS is mixed along with seawater. Moreover, the use of seawater and NS has a beneficial effect on microstructure refinement, thus improving the transport properties of cement mortars. Overall, the study has showed that both seawater and NS can be successfully used to accelerate the hydration process of low heat blended cements and to improve the mechanical and transport properties of cement-based composites.


Sign in / Sign up

Export Citation Format

Share Document