scholarly journals Structural and optical characteristic of 1-(4-Methylsulfonyl Phenyl)-3-(4-n, n Dimethyl (amino Phenyl)-2-Propen- 1-One (MSPPP) Chalcone doped ZnO nanoparticles

NanoNEXT ◽  
2021 ◽  
pp. 28-34
Author(s):  
Mohana F. Attia ◽  
Abdelrahman A. Elbadawi

The purpose of this paper is to investigate the structural and optical characteristics of 1-(4-Methylsulfonyl Phenyl)-3-(4-n, n Dimethyl (amino Phenyl)-2-Propen- 1-One (MSPPP) Chalcone doped in ZnO nanoparticles. Part of the aim is to study the characterization of chalcone doped ZnO nanoparticles by several techniques such as X-ray diffraction, Scanning electron microscope, FTIR spectroscopy, and diffuse reflection spectra.  All doped samples showed a hexagonal wurtzite structure. This study has shown that the crystallite size of pure ZnO varied from 23.50 to 27.45 nm and when increasing the chalcone percentage by 0.5 and 1.5%, has increased the crystallite sizes in the range of 33.40–33.80 nm and 33.80–36.20 nm, respectively. The value of the energy gap (Eg) for ZnO nanoparticles was 3.14 eV. For 0.5 and 1.5% chalcone doped ZnO, the energy gap decreased by an order of magnitude 0.16 eV.

2015 ◽  
Author(s):  
T. J. Castro ◽  
S. W. da Silva ◽  
F. Nakagomi ◽  
A. Franco Júnior ◽  
H. V. S. Pessoni ◽  
...  

2017 ◽  
Vol 14 (2) ◽  
pp. 146-152
Author(s):  
Neha Sharma ◽  
Sanjayay Kumar

In present study, undoped ZnO, Zn0.8Ag0.2O, Zn0.8Al0.2O and Zn0.6Al0.2Ag0.2O samples are synthesized by simple solution method. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX) and UV-visible (UV-Vis) spectroscopy are used to perform the characterization of undoped, doped and codoped samples. XRD analysis is exposed that hexagonal wurtzite crystalline structure obtained for undoped, doped and codoped samples without any extra representation of impurity phases. The crystalline size is when evaluated by using Scherrer, It has 44, 49, 41and 37nm for undoped ZnO, Zn0.8Ag0.2O, Zn0.8Al0.2O and Zn0.6Al0.2Ag0.2O samples. Similarly, the crystalline size and strain are also evaluated by Williamson hall (W-H) and size strain plot (SSP) for the undoped, doped and codoped nanoparticles. The evaluated crystalline size by SSP is three times greater than the result of the scherrer method. The SEM exposes that surface morphology of nanoparticle samples, in this case is the formation of large agglomeration in spherical shape with nanocrystallites of undoped and doped ZnO with apparent and definite boundaries. EDX points out the replacement of Al2+ and Ag+ with Zn2+ in ZnO matrix and consequences in the development of single-phase Zn1−x−yAgxAlyO. The blueshift is shown in UV-Vis absorption spectra because the band gap value increases with the increase in doping, except Ag+ doped ZnO nanoparticles.


2015 ◽  
Vol 15 (10) ◽  
pp. 8114-8119 ◽  
Author(s):  
Narinder Kaur ◽  
Sanjeev K. Sharma ◽  
Deuk Young Kim ◽  
Hemant Sharma ◽  
Narinder Singh

We are presenting the first report on the fabrication of imine-bearing ZnO nanoparticle thin films grown on Corning glass by spin coating. The sol was prepared by dissolving imine-bearing ZnO nanoparticles in dimethylsulfoxide (DMSO). The thickness of the films was manipulated to be 125–200 nm. The X-ray diffraction (XRD) analysis showed hexagonal wurtzite structure of imine-bearing ZnO nanoparticles thin films with a (002) preferential orientation. The stretching of chemical bonds of the imine linkage and Zn–O in imine-bearing ZnO nanoparticle thin films was confirmed by fourier transform infrared spectroscopy (FTIR). The grain size of the films increased with increasing the thickness of the films due to the number of coatings and subsequently dried at 200°C. The transmittance of imine-bearing ZnO nanoparticle thin films was observed to be ≥94%, which was in close agreement to pure ZnO thin films in the visible region. The bandgap of imine-bearing ZnO nanoparticle thin films (3.04 eV), evaluated from Tauc’s plot, was observed to be lower than that of pure ZnO (3.21 eV), which is attributed to the interaction of the ZnO nanoparticles with the imine receptor.


2016 ◽  
Vol 34 (2) ◽  
pp. 451-459 ◽  
Author(s):  
Raminder Preet Pal Singh ◽  
I.S. Hudiara ◽  
Shashi Bhushan Rana

AbstractIn the present study, pure ZnO and Fe-doped ZnO (Zn0.97Fe0.03O) nanoparticles were synthesized by simple coprecipitation method with zinc acetate, ferric nitrate and sodium hydroxide precursors. Pure ZnO and Fe-doped ZnO were further calcined at 450 °C, 600 °C and 750 °C for 2 h. The structural, morphological and optical properties of the samples were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and UV-Vis absorption spectroscopy. The X-ray diffraction studies revealed that the as-synthesized pure and doped ZnO nanoparticles have hexagonal wurtzite structure. The average crystallite size was calculated using Debye-Scherrer’s formula. The particle size was found to be in nano range and increased with an increase in calcination temperature. SEM micrographs confirmed the formation of spherical nanoparticles. Elemental compositions of various elements in pure and doped ZnO nanoparticles were determined by EDX spectroscopy. UV-Vis absorption spectra showed red shift (decrease in band gap) with increasing calcination temperature. Effect of calcination on the magnetic properties of Fe-doped ZnO sample was also studied using vibrating sample magnetometer (VSM). M-H curves at room temperature revealed that coercivity and remanent polarization increase with an increase in calcination temperature from 450 °C to 750 °C, whereas reverse effect was observed for magnetization saturation.


2016 ◽  
Vol 12 (12) ◽  
pp. 4593-4600
Author(s):  
A. Srithar ◽  
J.C. Kannan ◽  
T.S. Senthil

In the present investigation, MnxZn1-xO (x = 0.05, 0.075 and 0.1%) nanoparticles have been synthesized by simple precipitation method. Their structural, morphological and optical properties were examined by using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX), High resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Differential scanning calorimetry (DSC) and UV-Visible spectroscopy. The Powder X-ray diffraction studies confirmed that the manganese doped ZnO have a single phase nature with hexagonal wurtzite structure and Mn successfully incorporated into the lattice position of Zn in ZnO lattice. The FESEM and HRTEM images are coincided with each other for aggregation of particles in nature. The elemental analysis of doped samples has been evaluated by EDX. The antibacterial activity of Mn doped ZnO nanoparticles has also been examined.


2019 ◽  
Vol 74 (10) ◽  
pp. 937-944 ◽  
Author(s):  
Babiker Y. Abdulkhair ◽  
Mutaz E. Salih ◽  
Nuha Y. Elamin ◽  
A. MA. Fatima ◽  
A. Modwi

AbstractStrenuous efforts have been employed to prepare zinc oxide (ZnO) with eco-friendly methods; however, few studies have reported the fabrication of ZnO using a sustainable procedure. In this study, spherical ZnO nanoparticles were successfully fabricated for photocatalysis applications using a simple and eco-friendly method using an arabinose sugar solution. The ZnO nanoparticles with a wurtzite structure were obtained by combining zinc nitrate and arabinose in water, followed by heating, evaporation, and calcinations at different annealing temperatures. The annealed ZnO photocatalysts were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The findings revealed a hexagonal wurtzite structure and good crystallinity with crystallite size increasing from 18 to 31 nm by means of an increase in the annealing temperature. The photocatalytic performance was examined to determine the degradation of mix dye waste. The spherical ZnO nanoparticles showed mix pollutant degradation of 84 % in 25 min at 400 °C.


Cerâmica ◽  
2007 ◽  
Vol 53 (328) ◽  
pp. 422-447
Author(s):  
F. C. D. Lemos ◽  
D. M. A. Melo ◽  
P. S. de Lima ◽  
C. A. Paskocimas ◽  
E. Longo ◽  
...  

Rare earth modified lead titanate powders Pb1-xRExTiO3 (REPT), x = 0.01, 0.05, 0.07 and RE = Yb, Y, were prepared by the Pechini method. The materials were calcined under flowing oxygen at different temperatures from 300 to 700 ºC. Nanostructured REPT were investigated using X-ray diffraction, scanning electron microscopy and surface area analysis (BET). The results suggest that the modifier cation incorporated into the system has notable influence in the microstructure and a notable decrease in the crystallite sizes.


2015 ◽  
Vol 1804 ◽  
pp. 31-36 ◽  
Author(s):  
Melina Perez-Altamar ◽  
Hilary Marrero ◽  
Milton Martínez Julca ◽  
Oscar Perales Perez

ABSTRACTThe present work focuses on the polyol-mediated synthesis of pure and Mg-doped ZnO nanoparticles. The synthesized samples were characterized via X-ray diffraction, Fourier transformed infrared spectroscopy, ultraviolet visible spectroscopy and photoluminescence techniques. The Standard Plate Count was used to assess the bactericidal properties of the nanoparticles against E. coli at 1000 ppm and 1500 ppm of concentration. The capacity of the Zn-Mg oxides to generate singlet oxygen (SO) species was also evaluated. X-ray diffraction information evidenced the formation of ZnO-wurtzite; no diffraction peaks corresponding to isolated Mg-phases were detected. The average crystallite size of the Zn-Mg oxide nanocrystals was estimated in the 6nm - 7nm range. Infrared spectroscopy measurements confirmed the formation of the oxide with a Metal-Oxygen band centered on 536 cm-1; other bands associated to the functional groups of polyol by product were also observed. The exciton peak of UV spectrum suggests similarity in the particle size with the dopant addition. The effect of particle composition (i.e. doping level) on the corresponding generation of SO and bactericidal capacity is presented and discussed.


2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


1993 ◽  
Vol 324 ◽  
Author(s):  
V. Bellani ◽  
M. Amiotti ◽  
M. Geddo ◽  
G. Guizzetti ◽  
G. Landgren

AbstractWe measured photoreflectance (PR) spectra at different temperatures between 80 and 300 K, and optical absorption (OA) at 3 K on MOVPE grown Inl-xGaxAs nearly lattice-matched to InP. x-ray diffraction measurements gave a lattice mismatch δa/ao = -0.9.10−3 between ternary alloy and InP, corresponding to × = 0.485. We obtained the energy gap dependence on T from PR spectra. The blue shift of the gap was accounted for in terms of compositional difference with respect to the perfectly lattice matched alloy (× = 0.472), and elastic strain; moreover PR and OA showed evidence of the valence bands splitting at k = 0 due to interfacial strain, in fine agreement with theory.


Sign in / Sign up

Export Citation Format

Share Document