Particle Theory: A New Theory That May Reconcile General Relativity and Quantum Theory

Author(s):  
Dino Martinez

In an attempt to reconcile General Relativity and Quantum Mechanics, Particle Theory is a concept that may try to address this issue. This theory explains the effects accurately calculated by General Relativity in an alternate and real, physical way, and is therefore an alternative to GR. The theory states that indivisible atomic particles are instead divided into even smaller particles (called “EM particles”) held together by a central potential, the speed of light being the limit to their velocities. The “shedding” of these particles are responsible for the static and magnetic fields we observe. This also creates a “screening” effect that, for an atomic particle at rest, blocks about half of what this theory defines as the “true gravitational potential”, which is just twice the Newtonian value (mediated by what this theory defines as “gravity particles”). When an atomic system of particles starts moving in a certain direction, the act of shedding and the internal movement decreases as the particles orient themselves in the direction of the velocity, which reduces the screening effect, where we start to observe the relativistic effects of General (and Special) Relativity.

2019 ◽  
Vol 28 (14) ◽  
pp. 1944010 ◽  
Author(s):  
Dennis Hansen ◽  
Jelle Hartong ◽  
Niels A. Obers

Statements about relativistic effects are often subtle. In this essay we will demonstrate that the three classical tests of general relativity, namely perihelion precession, deflection of light and gravitational redshift, are passed perfectly by an extension of Newtonian gravity that includes gravitational time dilation effects while retaining a non-relativistic causal structure. This non-relativistic gravity theory arises from a covariant large speed of light expansion of Einstein’s theory of gravity that does not assume weak fields and which admits an action principle.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 81
Author(s):  
Peter Morley

We derive the equation that relates gravity to quantum mechanics: R|mass-shell=8πGc4LSM, where R is the scalar curvature, G is the gravitational constant, c is the speed of light and LSM is the Standard Model Lagrangian, or its future replacement. Implications of this equation are discussed in the paper. In particular, we show (in the last section) that this equation is the transformation that relates four-dimensional physics to two-dimensional physics.


Author(s):  
W. F. Chagas- Filho

Loop Quantum Gravity (LQG) is a formalism for describing the quantum mechanics of the gravitational field based on the canonical quantization of General Relativity (GR). The most important result of LQG is that geometric quantities such as area and volume are not arbitrary but are quantized in terms of a minimum length. In this paper we investigate the possibility of combining the notion of a minimum length with the basic equations that describe wave propagation. We find that the minimum length, combined with the constancy of the speed of light, induces a natural spectrum for the energy of a gravitational wave.


The problem of non-radial oscillations of stars can be formulated as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the space-time curvature. This approach discloses some unexpected correspondences between the theory of perturbations of stars and the theory of quantum mechanics. New relativistic effects are predicted, as the resonant behaviour of the axial modes in slowly rotating stars, due to the coupling with the polar modes induced by the Lense-Thirring effect.


1986 ◽  
Vol 7 ◽  
pp. 113-116
Author(s):  
Toshio Fukushima

The order of magnitude of relativistic effects is expressed as the power of v/c where v is a typical speed of objects and c is the speed of light in vacuum. In the neighbourhood of the Earth, v ≅ 30 km/s. Then the magnitudes of the relativistic effects are ordered as follows:


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


Author(s):  
Frank S. Levin

Chapter 2 reviews answers to the question of what is light, starting with the ancient Greeks and ending in 1900 with the wave concept of Maxwell’s electrodynamics. For some ancient Greeks, light consisted of atoms emitted from surface of the object, whereas for others it was fire that either entered into or was emitted by eyes, although the latter possibility was effectively eliminated around the year 1000. Competing proposals well after then were that light is either a wave phenomenon or consists of particles, with Isaac Newton’s corpuscular (particle) theory prevailing by the end of the 1600s over the wave concept championed by Christiaan Huygens, who published the first estimate of the speed of light. In the early 1800s, Thomas Young’s two-slit experiment proved that light was a wave, a concept codified and firmly grounded through Maxwell’s theory of electromagnetic waves.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


Philosophies ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 40
Author(s):  
Said Mikki

The goal of this article is to bring into wider attention the often neglected important work by Bertrand Russell on the philosophy of nature and the foundations of physics, published in the year 1927. It is suggested that the idea of what could be named Russell space, introduced in Part III of that book, may be viewed as more fundamental than many other types of spaces since the highly abstract nature of the topological ordinal space proposed by Russell there would incorporate into its very fabric the emergent nature of spacetime by deploying event assemblages, but not spacetime or particles, as the fundamental building blocks of the world. We also point out the curious historical fact that the book The Analysis of Matter can be chronologically considered the earliest book-length generic attempt to reflect on the relation between quantum mechanics, just emerging by that time, and general relativity.


1991 ◽  
Vol 253 ◽  
Author(s):  
B. L. Gyorffy

The symmetry properties of the Dirac equation, which describes electrons in relativistic quantum mechanics, is rather different from that of the corresponding Schr6dinger equation. Consequently, even when the velocity of light, c, is much larger than the velocity of an electron Vk, with wave vector, k, relativistic effects may be important. For instance, while the exchange interaction is isotropic in non-relativistic quantum mechanics the coupling between spin and orbital degrees of freedom in relativistic quantum mechanics implies that the band structure of a spin polarized metal depends on the orientation of its magnetization with respect to the crystal axis. As a consequence there is a finite set of degenerate directions for which the total energy of the electrons is an absolute minimum. Evidently, the above effect is the principle mechanism of the magneto crystalline anisotropy [1]. The following session will focus on this and other qualitatively new relativistic effects, such as dichroism at x-ray frequencies [2] or Fano effects in photo-emission from non-polarized solids [3].


Sign in / Sign up

Export Citation Format

Share Document