scholarly journals Gauge Symmetries in Physical Fields (Review)

Author(s):  
Tsutomu Kambe

Gauge invariance is one of the fundamental symmetries in theoretical physics. In this paper, the gauge symmetry is reviewed to see how it is working in fundamental physical fields: Electromagnetism, Quantum Electro Dynamics and Geometric Theory of Gravity. In the 19th century, the gauge invariance was recognized as a mathematical non-uniqueness of the electromagnetic potentials. Real recognition of the gauge symmetry and its physical significance required two new fields developed in the 20th century: the relativity theory for physics of the world structure of linked 4d-spacetime and the quantum mechanics for the new dimension of a phase factor in complex representation of wave function. Finally the gauge theory was formulated on the basis of the gauge principle which played a role of guiding principle in the study of physicalfields such as Quantum Electrodynamics, Particle Physics and Theory of Gravitation. Fluid mechanics of a perfect fluid can join in this circles, which is another motivation of the present review. There is a hint of fluid gauge theory in the general representation of rotational flows of an ideal compressible fluid satisfying the Euler’s equation, found in 2013 by the author. In fact, law of mass conservation can be deduced from the gauge symmetry equipped in the new system of fluid-flow field combined with a gauge field, rather than given a priori.

Author(s):  
Jean Zinn-Justin

This chapter is devoted Abelian gauge theory, whose physical realization is quantum electrodynamics (QED). Since many textbooks deal extensively with QED, the chapter focusses mainly on the more formal properties of Abelian gauge theories. First, the free massive vector field is considered, because its quantization does not immediately follow from the quantization of the scalar field, and thus requires a specific analysis. If the vector field is coupled to a conserved current, it is possible to construct a field theory with fermion matter renormalizable in four dimensions. In this case, a massless vector limit can be defined, and the corresponding field theory is gauge invariant. To directly quantize a gauge theory starting directly from first principles, it is necessary to introduce gauge fixing. The formal equivalence between different gauges is established. The Abelian gauge symmetry, broken by gauge-fixing terms, leads to a set of Ward–Takahashi (WT) identities which are used to prove the renormalizability of the quantum field theory (QFT). Renormalization group (RG) equations follow, and the RG β-function is calculated at leading order. As an introduction to the Standard Model of particle physics, the Abelian Landau–Ginzburg–Higgs model is described, where the gauge field is coupled to a complex scalar field with a non-zero expectation value, leading to a model that classically also describes a superconductor in a magnetic field.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Sheldon Lee Glashow

In this magisterial essay, Sheldon Lee Glashow examines the Yang–Mills model and its implications. This is history from the inside out, as a great master of theoretical physics reviews the development of the first and greatest non-abelian gauge theory and its role in the construction of the Standard Model of particle physics.


1998 ◽  
Vol 13 (15) ◽  
pp. 1201-1212 ◽  
Author(s):  
YONG-WAN KIM ◽  
YOUNG-JAI PARK

We quantize the spontaneously broken Abelian U(1) Higgs model by using the improved BFT and BFV formalisms. We construct the BFT physical fields and obtain the firstclass observables including the Hamiltonian in terms of these fields. We also explicitly show that there are exact form invariances between the second-class and first-class quantities. Then, according to the BFV formalism, we derive the corresponding Lagrangian having U(1) gauge symmetry. We also discuss at the classical level how one easily gets the first-class Lagrangian from the symmetry-broken second-class Lagrangian.


This volume contains lectures delivered at the Les Houches Summer School ‘Integrability: from statistical systems to gauge theory’ held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 956
Author(s):  
Dafne Carolina Arias-Perdomo ◽  
Adriano Cherchiglia ◽  
Brigitte Hiller ◽  
Marcos Sampaio

Quantum Field Theory, as the keystone of particle physics, has offered great insights into deciphering the core of Nature. Despite its striking success, by adhering to local interactions, Quantum Field Theory suffers from the appearance of divergent quantities in intermediary steps of the calculation, which encompasses the need for some regularization/renormalization prescription. As an alternative to traditional methods, based on the analytic extension of space–time dimension, frameworks that stay in the physical dimension have emerged; Implicit Regularization is one among them. We briefly review the method, aiming to illustrate how Implicit Regularization complies with the BPHZ theorem, which implies that it respects unitarity and locality to arbitrary loop order. We also pedagogically discuss how the method complies with gauge symmetry using one- and two-loop examples in QED and QCD.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1323 ◽  
Author(s):  
G. Jordan Maclay

Understanding the hydrogen atom has been at the heart of modern physics. Exploring the symmetry of the most fundamental two body system has led to advances in atomic physics, quantum mechanics, quantum electrodynamics, and elementary particle physics. In this pedagogic review, we present an integrated treatment of the symmetries of the Schrodinger hydrogen atom, including the classical atom, the SO(4) degeneracy group, the non-invariance group or spectrum generating group SO(4,1), and the expanded group SO(4,2). After giving a brief history of these discoveries, most of which took place from 1935–1975, we focus on the physics of the hydrogen atom, providing a background discussion of the symmetries, providing explicit expressions for all of the manifestly Hermitian generators in terms of position and momenta operators in a Cartesian space, explaining the action of the generators on the basis states, and giving a unified treatment of the bound and continuum states in terms of eigenfunctions that have the same quantum numbers as the ordinary bound states. We present some new results from SO(4,2) group theory that are useful in a practical application, the computation of the first order Lamb shift in the hydrogen atom. By using SO(4,2) methods, we are able to obtain a generating function for the radiative shift for all levels. Students, non-experts, and the new generation of scientists may find the clearer, integrated presentation of the symmetries of the hydrogen atom helpful and illuminating. Experts will find new perspectives, even some surprises.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


Author(s):  
David Montenegro ◽  
B. M. Pimentel

We examine the generalized quantum electrodynamics as a natural extension of the Maxwell electrodynamics to cure the one-loop divergence. We establish a precise scenario to discuss the underlying features between photon and fermion where the perturbative Maxwell electrodynamics fails. Our quantum model combines stability, unitarity, and gauge invariance as the central properties. To interpret the quantum fluctuations without suffering from the physical conflicts proved by Haag’s theorem, we construct the covariant quantization in the Heisenberg picture instead of the Interaction one. Furthermore, we discuss the absence of anomalous magnetic moment and mass-shell singularity.


Sign in / Sign up

Export Citation Format

Share Document