A Rapid Method for Measuring Elastin Degradation and Its Application in Leather Manufacturing

2020 ◽  
Vol 115 (8) ◽  
pp. 294-300
Author(s):  
Xu Zhang ◽  
Menchu Gao ◽  
Chunxiao Zhang ◽  
Sadaqat Ali Chattha ◽  
Biyu Peng

The degradation of elastin in skins during leather manufacturing can increase the yield area, softness and flatness of the leather, but, excessive degradation of elastin in leather processing induces looseness and increases veininess in the final leather product. However, the characterization of the degradation degree of elastin in skins and leathers was mostly studied through histological analysis qualitatively. There is an urgent need to develop a more efficient quantitative analytical strategy to evaluate the degradation of elastin in leather making processes. In this study, a simple and rapid HPLC method is developed for measuring elastin degradation in skins, leathers and leather processing liquors through determining the biological markers of elastin, namely desmosines. The separation of analytes was conducted on an C18 column (4.6 × 150 mm, 4.0 ?m) at 30 ?; the wavelength of diode array detector (DAD) was set at 275 nm; the mobile phases were composed of methanol and aqueous acetic acid (2.0 %, v/v). A gradient elution was carried out at a flow rate of 0.5 mL/min. It has been witnessed that Cr (III) has no effect on the retention time and peak area of desmosines, when the concentration of Cr (III) was in the range of 0 to 200 mg/L. In quantitative analysis, all of the calibration curves showed good linear regression (R2 ? 0.9990) within the tested ranges, and the recovery of desmosines was 100.9 % and 102.6 % for elastin hydrolysate and Cr-tanned elastin hydrolysate, respectively. The content of desmosines in elastin fiber, Cr-tanned elastin fiber and leather manufacturing liquors measured by established HPLC-DAD were comparable to the results obtained by amino acid analyzer. In the wet blue bating process, the quantitative analysis results are consistent with the histological staining results. The results demonstrate that the developed method is accurate and effective and can be readily utilized for the comprehensive process control of leather manufacturing.

2020 ◽  
Vol 16 (7) ◽  
pp. 831-843
Author(s):  
Yuwen Wang ◽  
Shuping Li ◽  
Liuhong Zhang ◽  
Shenglan Qi ◽  
Huida Guan ◽  
...  

Background and Objective: Kang Fu Xin liquid (KFX) is an official preparation made from the ethanol extract product from P. Americana. The present quality control method cannot control the quality of the preparation well. The aim of the present study is to establish a convenient HPLC method for multicomponents determination combined with fingerprint analysis for quality control of KFX. Methods: An HPLC-DAD method with gradient elution and detective wavelength switching program was developed to establish HPLC fingerprints of KFX, and 38 batches of KFX were compared and evaluated by similarity analysis (SA), hierarchical clustering analysis (HCA), and principal component analysis (PCA). Meanwhile, six nucleosides and three amino acids, including uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan in KFX were determined based on the HPLC fingerprints. Results: An HPLC method assisted with gradient elution and wavelength switching program was established and validated for multicomponents determination combined with fingerprint analysis of KFX. The results demonstrated that the similarity values of the KFX samples were more than 0.845. PCA indicated that peaks 4 (hypoxanthine), 7 (xanthine), 9 (tyrosine), 11, 13 and 17 might be the characteristic contributed components. The nine constituents in KFX, uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan, showed good regression (R2 > 0.9997) within test ranges and the recoveries of the method for all analytes were in the range from 96.74 to 104.24%. The limits of detections and quantifications for nine constituents in DAD were less than 0.22 and 0.43 μg•mL-1, respectively. Conclusion: The qualitative analysis of chemical fingerprints and the quantitative analysis of multiple indicators provide a powerful and rational way to control the KFX quality for pharmaceutical companies.


Author(s):  
Rochele Cassanta Rossi ◽  
Josué Guilherme Lisbôa Moura ◽  
Vanessa Mossmann ◽  
Patrícia Weimer ◽  
Pedro Eduardo Fröehlich

Abstract Fosamprenavir calcium is a protease inhibitor widely used in the treatment and prevention of human immunodeficiency virus and acquired immunodeficiency syndrome. This protease inhibitor serves as a prodrug of amprenavir, offering better oral bioavailability. Although this drug was approved by the FDA in 2003, there are few methods established for quantifying the stability for quality control analysis of fosamprenavir-coated tablets. The purpose of the study was to develop and validate a method for determining the stability of fosamprenavir-coated tablets (Telzir®) that may be applied by any quality control laboratory. Chromatographic separation was performed using a Vertical RP-18 column programmed to run a gradient elution with sodium acetate buffer and acetonitrile. Flow rate was 1.2 mL min−1 for a total run time of 15 min. Ultraviolet detection was set at 264 nm and the use of a photodiode array detector in scan mode allowed selectivity confirmation by peak purity evaluation. The analyte peak was found to be adequately separated from degradation products generated during forced degradation studies. Thus, the proposed method was found to accurately indicate stability and was sufficient for routine quantitative analysis of fosamprenavir in coated tablets without interference from major degradation products and excipients.


2019 ◽  
Vol 57 (7) ◽  
pp. 636-643 ◽  
Author(s):  
Aya A Youssef ◽  
N Magdy ◽  
Lobna A Hussein ◽  
A M El-Kosasy

Abstract Egypt has the highest prevalence of hepatitis C virus (HCV) in the world thus it launched a national program for eliminating HCV aiming to treat 300,000 HCV patients per year. Three anti-HCV co-administered drugs; ribavirin (RBV), sofosbuvir (SF) daclatasvir (DAC) were simultaneously determined in human plasma by a validated, simple and sensitive RP-HPLC method using propyl paraben as an internal standard. Liquid–liquid extraction using ethyl acetate was used for samples extraction. Chromatographic separation was achieved on Scharlau® C18 column (250 × 4.6 mm2, 5 μm). Gradient elution was employed with a mobile phase mixture of water and acetonitrile at a flow rate 1 mL/min. UV detection using photodiode array detector was carried out at 207, 260 and 312 nm for RBV, SF and DAC, respectively. Method validation was performed according to the FDA guidelines for bioanalytical method validation. The calibration curves were linear over the ranges (0.5–80, 0.1–40 and 0.5–80 μg/mL) with average recoveries (100.64–108.28%, 98.48–105.91% and 97.68–101.38%) for RBV, SF and DAC, respectively. The intra-day and inter-day precision and accuracy results were within the acceptable limits. Stability assays revealed that the three studied analytes were stable during sample storage, preparation and injection. The method can be successfully applied in routine analysis of plasma of HCV patients treated with this combination therapy which aids in therapeutic drug monitoring and patients’ follow-up especially in Egypt and other developing countries fighting HCV.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Haijiang Zhang ◽  
Wei Yao ◽  
Yunyun Chen ◽  
Peipei He ◽  
Yao Chen ◽  
...  

A simple and reliable HPLC method was developed and validated for the simultaneous quantification of four major constituents in Semen Vaccariae. The chromatographic separation was performed on an Agilent Zorbax SB-C18 column with gradient elution using methanol and water. The calibration curves showed good linearity of R2 > 0.9999 with LOQs (S/N = 10) of 0.20–1.16 μg/mL. The precision was evaluated by intra- and inter-day assays and R.S.D. values were less than 2.09%. The recovery rates were between 97.0% and 105.0%. The developed method was applied to the quantitative analysis of Semen Vaccariae and its stir-fried products. During the stir-frying process, vaccarin degraded and yielded isovitexin-2″- O-arabinoside. The preferable stir-frying temperature is around 120°C. The developed HPLC method can be applied to the quality control of crude and stir-fried Semen Vaccariae.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Shubei Li ◽  
Dong Zhang ◽  
Lan Yang ◽  
Yujie Li ◽  
Xiaoxin Zhu ◽  
...  

A simple and accurate HPLC-UV method was developed for the simultaneous quantitative analysis of main stilbenes and flavones in different parts (fronds, rhizomes, and frond bases) ofM. struthiopteris. The chromatographic separation was performed on a Kromasil C18 column (4.6 mm × 250 mm, 5 μm) with the mobile phase of MeOH-H2O (including 0.1% phosphoric acid) using a gradient elution at the flow rate of 1.0 mL min−1and UV detection at 295 nm. The method was validated by specificity, linearity, accuracy (recovery), and precision tests (repeatability, intra- and interday). For all the six compounds, the linear regression coefficients ranged from 0.9958 to 0.9998 within the test ranges; intra- and interday precisions were<2% and the mean recoveries ranged from 98.09 to 103.56%. The amount of these compounds in the frond bases was almost the same as in the rhizomes but much higher than that in the fronds. The results indicate that the HPLC method developed was appropriate for the analysis of the six compounds in different parts (fronds, rhizomes, and frond bases) ofM. struthiopteris.


2015 ◽  
Vol 98 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Magda Ascaso ◽  
Pilar Pérez-Lozano ◽  
Mireia García ◽  
Encarna García-Montoya ◽  
Montse Miñarro ◽  
...  

Abstract A stability indicating method was established through a stress study, wherein different methods of degradation (oxidation, hydrolysis, photolysis, and temperature) were studied simultaneously to determine the active ingredient hydrocortisone acetate, preservatives propyl parahydroxybenzoate, and methyl parahydroxybenzoate, antioxidant butylhydroxyanisole (BHA), and their degradation products in a semisolid dosage gel form. The proposed method was suitably validated using a Zorbax SB-Phenyl column and gradient elution. The mobile phase consisted of a mixture of methanol, acetonitrile, and water in different proportions according to a planned program at a flow rate of 1.5 mL/min. The diode array detector was set at 240 nm for the active substance and two preservatives,and 290 nm for BHA. The validation study was conducted according to International Conference on Harmonization guidelines for specificity, linearity, repeatability, precision, and accuracy. The method was usedfor QC of hydrocortisone acetate gel and for the stability studies with the aim of quantifying the active substance, preservatives, antioxidant, and degradation products. It has proved to be suitable as a fast and reliable method for QC.


Author(s):  
Parikela vani

A simple, rapid, precise, sensitive and reproducible reverse phase high performance liquid chromatography (RP-HPLC) method has been developed for the quantitative analysis of Tenofovir Disoproxil Fumarate and Emtricitabine in pharmaceutical dosage form. Chromatographic separation of Tenofovir Disoproxil Fumarate and Emtricitabine was achieved on Waters Alliance -2695, by using Luna C18 (250mm x 4.6mm, 5µm) column and the mobile phase containing 0.1% TEA adjusted pH-2.5 with OPA & ACN in the ratio of 60:40 v/v. The flow rate was 1.0 ml/min, detection was carried out by absorption at 261 nm using a photodiode array detector at ambient temperature. The number of theoretical plates and tailing factor for Tenofovir Disoproxil Fumarate and Emtricitabine were NLT 2000 and should not more than 2 respectively. The linearity of the method was excellent over the concentration range 30-450 µg/ml and 20-300 µg/ml for Tenofovir Disoproxil Fumarate and Emtricitabine respectively. The correlation coefficient was 0.999. % Relative standard deviation of peak areas of all measurements always less than 2.0. The proposed method was validated according to ICH guidelines. The method was found to be simple, economical, suitable, precise, accurate & robust method for quantitative analysis of Tenofovir Disoproxil Fumarate and Emtricitabine study of its stability.


2021 ◽  
Vol 20 (11) ◽  
pp. 2371-2379
Author(s):  
Yanqin Zhu ◽  
Qinhong Yin ◽  
Yaling Yang

Purpose: To develop, validate and compare two chromatographic methods - high performance liquid chromatography with diode array detector ((HPLC-DAD) and high performance liquid chromatography with ultraviolet detection (UPLC-UV) for the effective analysis of polyphenols in Moringa oleifera leaves.Methods: HPLC-DAD and UPLC-UV methods were applied for the accurate determination of eleven major polyphenols in Moringa oleifera leaves. The chromatographic conditions of the eleven polyphenols was determined on two C18 column by gradient elution with 0.5 % phosphoric acid solution -acetonitrile as the eluate, and at a flow rate of 1.0 and 0.5 mL/min for HPLC-DAD and UPLC-UV methods, respectively. Detector parameter of UPLC-UV was fixed at 203 nm. The assay methods were validated systematically.Results: The instrumental methods (HPLC-DAD and UPLC-UV) had good linearity, precision,repeatability and recovery. For both methods, quantification limits of UPLC-UV (0.057 - 0.363 μg/mL) were lower than those of UPLC-UV (0.094 - 1.532 μg/mL). The UPLC method with a shorter running time and more sensitive detection was applied in comparing to the HPLC method. After optimization and evaluation, the baseline of 11 compounds was separated effectively within 68 and 34 min, respectively.Conclusion: The developed HPLC-DAD and UPLC-UV assays were successfully utilized for thesimultaneous analysis of eleven major polyphenols and can readily be utilized as quality control tools for Moringa oleifera leaves in China, with UPLC-UV method showing better separation, lower organic solvent usage and shorter analytical period.


Author(s):  
Saniye Özcan ◽  
Serkan Levent ◽  
Nafiz Öncü Can

: The alkyl esters of p-hydroxybenzoic acid at the C-4 position, “the parabens,” including methyl, ethyl, propyl, and butyl, are widely used as antimicrobial preservatives in foods, cosmetics, and pharmaceuticals. Official regulations on the use of these compounds make their analysis essential for the estimation of their exposure. On this basis, the presented study was realized to develop a simple, selective and cheap high-performance liquid chromatographic method for the quantitative determination of methyl paraben (MP), ethyl paraben (EP), n-propyl paraben (NPP), isopropyl paraben (IPP), n-butyl paraben (NBP), isobutyl paraben (IBP) and benzyl paraben (BP) in pharmaceuticals and cosmetic products. The chromatographic separation of the analytes was achieved under flow rate gradient elution conditions using a C18-bonded core-shell silica particle column (2.6 μm particle size, 150 × 3.0 mm from Phenomenex Co.). The samples were injected into the system as aliquots of 1.0 μL, and the compounds were detected by using a photodiode array detector set at 254 nm wavelength. With this technique, seven paraben derivatives can be determined in the concentration range of 250-2000 ng/mL. The recovery of the method is in the range of 99.95-13.84%, and the RSD is at a maximum value of 3.95%. The proposed method was fully validated and successfully applied to different pharmaceutical and cosmetic samples (n=16), including syrups, suspensions, oral sprays, gels, etc. At least one paraben derivative was detected in six of the samples, and was determined quantitatively. The maximum amount of a paraben derivative found in the analyzed samples is 321.7 ng/mL, which was MP. To the best of our knowledge, this is the first LC method, which is applicable both on pharmaceutical and cosmetic samples.


2013 ◽  
Vol 49 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Ana Cristina de Mattos ◽  
Najeh Maissar Khalil ◽  
Rubiana Mara Mainardes

The objective of this work was to develop and validate a rapid high performance liquid chromatography (HPLC) method for the quantitative analysis of fluorouracil (5-FU) in polymeric nanoparticles. Chromatographic analyses were performed on an RP C18 column with a mobile phase consisting of acetonitrile and water (10:90, v/v) at a flow rate of 1 mL/min. The 5-FU was detected and quantitated using a photodiode array detector at a wavelength of 265 nm. The method was shown to be specific and linear in the range of 0.1-10 µg/mL (r = 0.9997). The precision (intra- and inter-day) was demonstrated because the maximum relative standard deviation was 3.51%. The method is robust relative to changes in flow rate, column and temperature. The limits of detection and quantitation were 10.86 and 32.78 ng/mL, respectively. The method fulfilled the requirements for reliability and feasibility for application to the quantitative analysis of 5-FU in polymeric nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document