scholarly journals Memprediksi Harga Komoditas Cabe Menggunakan Metode Backpropagation di Wilayah Kota Payakumbuh

KOMTEKINFO ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 33-48
Author(s):  
Allans Prima Aulia ◽  
Yuhandri ◽  
Fhajri Arye Gemilang

Chili is one of the spices needed by the majority of Indonesian people. These high needs have an impact on the price of this agricultural commodity which has become very fluctuated. This study, uses the backpropagation method to predict chilli prices in Payakumbuh City, with data sourced from the Badan Pusat Statistik Kota Payakumbuh. The data format are weekly chilli price data for the period 2014 to 2019. Data variables are arranged into time series forms with 4 input values from each week per year, and 1 target value. From the test results obtained the MSE value (Mean Squared Error) of 0.00118 with prediction accuracy of 98.56%. The results of this study can prove that Artificial Neural Networks using the backpropagation method can predict commodity prices for chilli in Payakumbuh City with a good level of accuracy, so that it can be used for the following year.

2021 ◽  
Author(s):  
Ma Te ◽  
Tetsuya Inagaki ◽  
Masato Yoshida ◽  
Mayumi Ichino ◽  
Satoru Tsuchikawa

Abstract Wood has various mechanical properties, so stiffness evaluation is critical for quality management. Using conventional strain gauges constantly is high cost, also challenging to measure precious wood materials due to the use of strong adhesive. This study demonstrates the correlation between light scattering changes inside the wood cell walls and tensile strain. A multifiber-based visible-near-infrared (Vis–NIR) spatially resolved spectroscopy (SRS) system was designed to rapidly and conventiently acquire such light scattering changes. For the preliminary experiment, samples with different thicknesses were measured to evaluate the influence of thickness. The differences in Vis–NIR SRS spectral data diminish with an increase in sample thickness, which suggests that the SRS method can successfully measure the whole strain (i.e., surface and inside) of wood samples. Then, for the primary experiment, 18 wood samples with the same thickness (2 mm) were tested to construct a strain calibration model. The prediction accuracy was characterized by a determination coefficient (R2) of 0.86 with a root mean squared error (RMSE) of 297.89 με for five-fold cross-validation; for test validation, The prediction accuracy was characterized by an R2 of 0.82 and an RMSE of 345.44 με.


2021 ◽  
Author(s):  
Ginno Millán ◽  
Román Osorio-Comparán ◽  
Gastón Lefranc

<div>This article explores the required amount of time series points from a high-speed computer network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series addresses resulting from the capture of high-speed network traffic, followed by addressing the minimum amount of point required to obtain in accurate estimates of the Hurst exponent. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behaviour, standard deviation, and Mean Squared Error using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few</div><div>points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed computer network.</div>


2019 ◽  
Vol 962 ◽  
pp. 41-48
Author(s):  
Tzong Daw Wu ◽  
Jiun Shen Chen ◽  
Ching Pei Tseng ◽  
Cheng Chang Hsieh

This study presents a real-time method for determining the thickness of each layer in multilayer thin films. Artificial neural networks (ANNs) were introduced to estimate thicknesses from a transmittance spectrum. After training via theoretical spectra which were generated by thin-film optics and modified by noise, ANNs were applied to estimate the thicknesses of four-layer nanoscale films which were TiO2, Ag, Ti, and TiO2 thin films assembled sequentially on polyethylene terephthalate (PET) substrates. The results reveal that the mean squared error of the estimation is 2.6 nm2, and is accurate enough to monitor film growth in real time.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 28197-28209 ◽  
Author(s):  
Dabin Zhang ◽  
Shanying Chen ◽  
Ling Liwen ◽  
Qiang Xia

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hye-Jin Kim ◽  
Sung Min Park ◽  
Byung Jin Choi ◽  
Seung-Hyun Moon ◽  
Yong-Hyuk Kim

We propose three quality control (QC) techniques using machine learning that depend on the type of input data used for training. These include QC based on time series of a single weather element, QC based on time series in conjunction with other weather elements, and QC using spatiotemporal characteristics. We performed machine learning-based QC on each weather element of atmospheric data, such as temperature, acquired from seven types of IoT sensors and applied machine learning algorithms, such as support vector regression, on data with errors to make meaningful estimates from them. By using the root mean squared error (RMSE), we evaluated the performance of the proposed techniques. As a result, the QC done in conjunction with other weather elements had 0.14% lower RMSE on average than QC conducted with only a single weather element. In the case of QC with spatiotemporal characteristic considerations, the QC done via training with AWS data showed performance with 17% lower RMSE than QC done with only raw data.


2009 ◽  
Vol 2009 ◽  
pp. 1-21
Author(s):  
Sanjay L. Badjate ◽  
Sanjay V. Dudul

Multistep ahead prediction of a chaotic time series is a difficult task that has attracted increasing interest in the recent years. The interest in this work is the development of nonlinear neural network models for the purpose of building multistep chaotic time series prediction. In the literature there is a wide range of different approaches but their success depends on the predicting performance of the individual methods. Also the most popular neural models are based on the statistical and traditional feed forward neural networks. But it is seen that this kind of neural model may present some disadvantages when long-term prediction is required. In this paper focused time-lagged recurrent neural network (FTLRNN) model with gamma memory is developed for different prediction horizons. It is observed that this predictor performs remarkably well for short-term predictions as well as medium-term predictions. For coupled partial differential equations generated chaotic time series such as Mackey Glass and Duffing, FTLRNN-based predictor performs consistently well for different depths of predictions ranging from short term to long term, with only slight deterioration after k is increased beyond 50. For real-world highly complex and nonstationary time series like Sunspots and Laser, though the proposed predictor does perform reasonably for short term and medium-term predictions, its prediction ability drops for long term ahead prediction. However, still this is the best possible prediction results considering the facts that these are nonstationary time series. As a matter of fact, no other NN configuration can match the performance of FTLRNN model. The authors experimented the performance of this FTLRNN model on predicting the dynamic behavior of typical Chaotic Mackey-Glass time series, Duffing time series, and two real-time chaotic time series such as monthly sunspots and laser. Static multi layer perceptron (MLP) model is also attempted and compared against the proposed model on the performance measures like mean squared error (MSE), Normalized mean squared error (NMSE), and Correlation Coefficient (r). The standard back-propagation algorithm with momentum term has been used for both the models.


Author(s):  
René Mayrhofer ◽  
Helmut Hlavacs ◽  
Rainhard Dieter Findling

Purpose – The purpose of this article is to improve detection of common movement. Detecting if two or multiple devices are moved together is an interesting problem for different applications. However, these devices may be aligned arbitrarily with regards to each other, and the three dimensions sampled by their respective local accelerometers can therefore not be directly compared. The typical approach is to ignore all angular components and only compare overall acceleration magnitudes – with the obvious disadvantage of discarding potentially useful information. Design/methodology/approach – This paper contributes a method to analytically determine relative spatial alignment of two devices based on their acceleration time series. The method uses quaternions to compute the optimal rotation with regards to minimizing the mean squared error. Findings – Based on real-world experimental data from smartphones and smartwatches shaken together, the paper demonstrates the effectiveness of the method with a magnitude squared coherence metric, for which an improved equal error rate (EER) of 0.16 (when using derotation) over an EER of 0.18 (when not using derotation) is shown. Practical implications – After derotation, the reference system of one device can be (locally and independently) aligned with the other, and thus all three dimensions can consequently be compared for more accurate classification. Originality/value – Without derotating time series, angular information cannot be used for deciding if devices have been moved together. To the best of the authors ' knowledge, this is the first analytic approach to find the optimal derotation of the coordinate systems, given only the two 3D time acceleration series of devices (supposedly) moved together. It can be used as the basis for further research on improved classification toward acceleration-based device pairing.


Biometrika ◽  
1988 ◽  
Vol 75 (3) ◽  
pp. 485-490 ◽  
Author(s):  
CLIFFORD M. HURVICH

2017 ◽  
Vol 12 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Dipankar Mitra ◽  
Ranjit Kumar Paul

Sign in / Sign up

Export Citation Format

Share Document