scholarly journals SIMULATION OF THE STRESSED-DEFORMED STATE OF A RING WELDED CONNECTION WITH LACK OF FUSION

Author(s):  
L. M. Gurevich ◽  
V. F. Danenko ◽  
A. A. Istrati

Computer modeling of changes in stresses and strains under axial tension of pipes with a ring mechanically inhomogeneous welded joint was carried out. Annular mechanically inhomogeneous welded joint had an different mechanical properties of the joint, heat-affected zone and base metal. A defect of the type of lack of fusion of various geometric sizes is present in the welded joint. The maximum stresses during axial tension develop in the zone of lack of penetration, which is a stress concentrator. The stress concentration values for various extent of the defect are determined. The distribution of stresses and strains in welds at various defect values is investigated.

Author(s):  
L. M. Gurevich ◽  
V. F. Danenko ◽  
A. A. Istrati ◽  
V. A. Sonnova

Finite element simulates of changing stresses and strains under loading by gradually increasing internal pressure of cylindrical welded vessels was carried out. The vessels had an annular mechanically inhomogeneous welded joint with different mechanical properties of the joint, heat-affected zone, and base metal. Maximum stresses developed in the caps of the vessels, and the annular joint are lightly loaded. The distribution of stresses and strains in joint at various design parameters of the vessels is investigated.


Author(s):  
David De Leon ◽  
Carlos Cortes

Pipelines are the most economical way to transport hydrocarbons. In Mexico, PEMEX manages more than 60,000 Km of oil and gas land and marine pipelines. Therefore, their structural integrity must be carefully assessed. Pipeline managers require reliable and realistic codes in order to back up their decisions about design, maintenance and operation. In particular, for safety prediction, the failure modes and uncertainties involved in each loading condition need to be incorporated in the analysis in order to specify the pipelines use thresholds that keep them over acceptable safety levels within their operating lifetimes [1, 2]. For these reasons, a structural reliability formulation appears to be the appropriate framework to perform the evaluation. In this paper, the land pipeline reliability is estimated for the internal pressure, bending and tension failure mode conditions. These loading conditions are applied individually and tension and bending in a combined fashion, and random variability on the internal pressure, steel mechanical properties as well as the degradation effect of internal corrosion due to the transported fluid is included. So far, seamless pipeline is considered as used in Mexico. A set of internal pressures and mechanical properties are randomly generated through Monte Carlo simulation and the pipeline response under each simulated condition is obtained by making use of commercial software. The response analysis resorts on the nonlinear finite element method and it involves the calculation of maximum stresses and stress concentration factors under no corroded and corroded conditions. The following limit states are assessed: 1) the margin between maximum stresses due to internal pressure, tension and bending and the material capacity and 2) the margin between stress concentration factor and fracture initiation toughness. The above described limit states are calculated for no corroded condition and, once the critical failure modes are identified, corrosion effect is included on them. The failure probability is estimated from the response statistics for the considered limit state. The Cornell reliability index and the respective safety factor are also estimated. These results may be further extended and used for risk assessments and code calibration for design, inspection and maintenance of pipelines in Mexico.


2020 ◽  
pp. 99-108
Author(s):  
S B Sapozhnikov ◽  
M A Ivanov ◽  
I A Shcherbakov

In this paper we consider the problems arising in the numerical estimation of the ultimate load of welded joints of high-strength steels with slight hardening. The stress concentrator in the transition node from the deposited to the base metal is modeled based on the example of welding a roller wire on a plate made of high-strength steel. The use of welding wire with a yield point lower than that of the base metal allowed to simulate areas of the welded joint with heterogeneous mechanical properties. The geometry of three areas of the welded joint is studied, i.e. weld metal, heat-affected zone (HAZ) and the base metal. Mechanical properties of all three areas are determined by calculation and experimentally. For this purpose, it is proposed to consider the material in all sections as ideally elastic-plastic, and the yield strength is uniquely associated with the hardness in the indentation zone (a Rockwell diamond cone is used). Calculations of the inelastic indentation process by the finite element method (FEM) in axis-symmetric formulation allowed obtaining a linear relationship between the hardness and the yield strength with a coefficient of 0.418. Tests at a quasi-static three-point bend (with stretching in the surfacing area) were carried out on sample beams cut perpendicular to the direction of welding. The “force-deflection” diagrams are obtained and compared with the calculated curves (FEM in a three-dimensional formulation with an explicit consideration of the complex configuration of all sections and different yield stress in the areas determined by local hardness values). There is a good agreement between the calculated and experimental ultimate loads. The proposed method of the three-stage study (determination of local hardness, yield strength in the areas and the ultimate load) can be effectively used to assess the ultimate loads of the welded joints due to the low parametricity of the proposed models of materials inelastic deformation in areas for which it is impossible to manufacture standard samples for the study of mechanical properties. The experimental study of the strengthening effect of the seam with a stress concentrator in the form of an angle of 90 degrees on the value of the ultimate bending load showed that the removal of the deposited metal does not lead to an increase in the ultimate load of the welded joint when using the welding wire of low-carbon high-plastic steel.


2018 ◽  
Vol 84 (12) ◽  
pp. 61-67
Author(s):  
V. A. Eryshev

The mechanical properties of a complex composite material formed by steel and hardened concrete, are studied. A technique of operative quality control of new credible concrete and reinforcement, both in laboratory and field conditions is developed for determination of the strength and strain characteristics of materials, as well as cohesion forces determining their joint operation under load. The design of the mobile unit is presented. The unit provides a possibility of changing the direction of loading and testing the reinforced element of the given shape both for tension and compression. Moreover, the nomenclature of testing equipment and the number of molds for manufacturing concrete samples substantially decrease. Using the values of forcing resulting in concrete cracking when the joint work of concrete and reinforcement is disrupted the values of the inherent stresses and strains attributed to the concrete shrinkage are determined. An analytical relationship between the forces and deformations of the reinforced concrete sample with central reinforcement is derived for axial tension and compression, with allowance for strains and stresses in the reinforcement and concrete resulted from concrete shrinkage. The results of experimental studies are presented, including tension diagrams and diagrams of developing axial deformations with an increase in the load under the central loading of the reinforced elements. A methodology of accounting for stresses and deformations resulted from concrete shrinkage is developed. The applicability of the derived analytical relationships between stresses and deformations on the material diagrams to calculations of the reinforced concrete structures in the framework of the deformation model is estimated.


2008 ◽  
Vol 33-37 ◽  
pp. 919-924
Author(s):  
Chung Ming Tan ◽  
Yeau Ren Jeng ◽  
Yung Chuan Chiou

This paper employs static atomistic simulations to investigate the effect of a void on the nanoindentation of Cu(111). The simulations minimize the potential energy of the complete system via finite element formulation to identify the equilibrium configuration of any deformed state. The size and depth of the void are treated as two variable parameters. The numerical results reveal that the void disappears when the indentation depth is sufficiently large. A stress concentration is observed at the internal surface of the void in all simulations cases. The results indicate that the presence of a void has a significant influence on the nanohardness extracted from the nanoindentation tests.


1983 ◽  
Vol 18 (1) ◽  
pp. 7-14 ◽  
Author(s):  
T H Hyde ◽  
B J Marsden

The finite element method has been used to investigate the behaviour of axisymmetric loaded projections (e.g., bolts) subjected to axial tension and bending. The results show that existing data for stepped shafts, which have the axial tension and bending loads applied remote from the region of the step, cannot be applied to loaded projections with the same geometry. For h/d (head thickness to shank diameter ratio) values greater than 0.66 and 0.41 for axial tension and bending, respectively, the stress concentration factors are independent of h/d, load position, and D/d (head diameter to shank diameter ratio) for D/d in the range 1.5 ≤ D/d ≤ 2.0. Smaller h/d values result in large increases in the stress concentration factors due to dishing of the head.


2015 ◽  
Vol 24 (4) ◽  
pp. 1434-1440 ◽  
Author(s):  
Xia Liu ◽  
Fenggui Lu ◽  
Renjie Yang ◽  
Peng Wang ◽  
Xiaojin Xu ◽  
...  

2011 ◽  
Vol 197-198 ◽  
pp. 1658-1661
Author(s):  
Ying Xiong ◽  
Han Ying Zheng

Fatigue tests are carried out for 16MnR welded joint under constant strain control. Test results reveal that 16MnR weld metal exhibits characteristic of cyclic softening and non-masing obviously. The strain–life curve can be best described by the three-parameter equation. It shows the fatigue endurance limit in the heat-affecting zone (HAZ) of welded joint is lower than that in the weld metal.


2022 ◽  
Vol 905 ◽  
pp. 44-50
Author(s):  
Li Wang ◽  
Ya Ya Zheng ◽  
Shi Hu Hu

The effects of welding wire composition on microstructure and mechanical properties of welded joint in Al-Mg-Si alloy were studied by electrochemical test, X-ray diffraction (XRD) analysis and metallographic analysis. The results show that the weld zone is composed of coarse columnar dendrites and fine equated grains. Recrystallized grains are observed in the fusion zone, and the microstructure in the heat affected zone is coarsened by welding heat. The hardness curve of welded joint is like W-shaped, the highest hardness point appears near the fusion zone, and the lowest hardness point is in the heat affected zone. The main second phases of welded joints are: matrix α-Al, Mg2Si, AlMnSi, elemental Si and SiO2. The addition of rare earth in welding wire can refine the grain in weld zone obviously, produce fine grain strengthening effect, and improve the electrochemical performance of weld.


Sign in / Sign up

Export Citation Format

Share Document