scholarly journals COMPARATIVE ANALYSIS OF STRESS DISTRIBUTION IN ELEMENTS OF DIFFERENT DESIGN OF HINGE JOINT OF SPHERICAL MECHANISM

Author(s):  
A. V. Popov ◽  
I. V. Notov ◽  
A. A. Rozhnov

Results of simulation of stress-strain state of various design solutions of hinge of spherical converting mechanism for stepless drives are considered. Comparisons of hinge loading are given when using an intermediate bushing made of various materials and without it. Recommendations for designing such an element taking into account the peculiarities of the work are justified.

Author(s):  
A. V. Popov ◽  
A. A. Rozhnov ◽  
I. V. Notov

The article presents a theoretical study of the stress distribution of the leading links of the spherical transforming mechanism. Diagrams of the stress-strain state and stress fields in the leading element of a spherical mechanism are presented. Methods for improving the reliability and load capacity of the hinge drive shaft with the leading ring of the spherical mechanism are proposed.


Author(s):  
Sergey B. Kosytsyn ◽  
Vladimir Y. Akulich

The work is aimed at research of the stress-strain state of a cylindrical shell of a tunnel using the non-linear static analysis and construction stage analysis. Research is carried out on the example of determining the stress-strain state of the tubing (shells) of the main line tunnel, constructed using a tunnel powered complex (slurry shield). Based on obtained results, a comparative analysis of the computational models with the corresponding conclusions is presented.


Author(s):  
M. O. Lobovskiy ◽  
◽  
A. L. Tukkiya ◽  
P. A. Pyatkin ◽  
◽  
...  

The micrometer method for measuring deformations and loads in bar elements has proved to be effective not only in laboratory tests, but also in field tests on a real construction site. Having carried out a comparative analysis of the method proposed by the authors for monitoring the stress-strain state (SSS) with the strain gauge method which is widely used at present, the authors have proved that the method for measuring deformations and loads using a micrometer is not inferior in accuracy to the strain gauge method, although it is much cheaper.


2021 ◽  
Vol 274 ◽  
pp. 02009
Author(s):  
Denis Nikolenko ◽  
Maxim Nikolenko ◽  
Anastasiya Filippova

The article focuses on the importance of the strength and durability of highways due to the projected increase in freight traffic. It also describes the consequences of uneven distribution of loads in traffic lanes, depending on the prevailing traffic in each lane. The studies, that were carried out earlier by various scientists, were taken into account, thankfully to which results were obtained on the composition of the traffic flow, the difference in the loading of road pavements, as well as the stress-strain state of road structures. As a result, a model that reflects the dependence of the influence of the speed of movement of vehicles on the dynamic deformation of structures, was developed. Consequently, a number of design solutions were established to ensure the required strength of all structures.


2016 ◽  
Vol 4 (2) ◽  
pp. 0-0
Author(s):  
Светлана Ямаева ◽  
Svetlana Yamaeva ◽  
Олег Денисов ◽  
Oleg Denisov

The results of numerical investigation of the stress-strain state of subgrade groups of hollow circular piles with diameters of less than three step under the action of horizontal loads. Shows the effect of pitch on piles move horizontally loaded the bases and a comparative analysis of the nature of their work with full-scale tests and numerical simulations. Pseudoplane used computational model of the foundation for the theory of local deformations and linearly deformable half.


2021 ◽  
Vol 264 ◽  
pp. 02008
Author(s):  
Ruslan Khakimzyanov ◽  
Anvar Togaev ◽  
Aziz Rashidov

This article discusses the calculation of the strength of the frame structure of the universal chassis of the tractor trailer in the T-Flex software package and the comparative analysis of the results with experimental data and model data based on the principle of virtual work (possible movements).


Author(s):  
V.V. LEONTYEV ◽  
E.V. KONDRATOVA ◽  
V.P. KOLOMIYCHENKO

Traditional methods for calculating welded joints are based on approximate methods for determining the forces that occur in the joint. This leads to inaccuracies in the definition of stress. In addition, this approach does not allow obtaining a complete picture of the stress-strain state of the joint. All this leads to the need to increase the coefficient of safety margin and, as a result, to increase the cost of construction. The proposed method of calculating the connection using the finite element method allows us to determine the stresses in all the elements of the connection very accurately. This makes it possible to obtain a reliable picture of the stress-strain state of all elements of the connection. As a result, it is possible to reduce the complexity of creating a compound and its mass. The finite element method should be used for calculating critical connections with complex operating conditions. An example of calculating such a connection is considered. A comparative analysis of the results of calculating the t-joint using the arm Joint module Of the WinMachine arm system and the Abaqus finite element package is performed.


Sign in / Sign up

Export Citation Format

Share Document