scholarly journals PECULIARITIES OF THE PROCESS OF ULTRASONIC VIBRATION MASHINING

Author(s):  
S. I. Agapov ◽  
A. S. Prokhvatilov ◽  
A. F. Tolstyakov ◽  
D. V. Zayarny

The paper discusses the distinctive features of the machining process during low-module gear cutting with ultrasonic vibration of the blank.

Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Magnesium alloys have a tremendous possibility for biomedical applications due to their good biocompatibility, integrity and degradability, but their low ignition temperature and easy corrosive property restrict the machining process for potential biomedical applications. In this research, ultrasonic vibration-assisted ball milling (UVABM) for AZ31B is investigated to improve the cutting performance and get specific surface morphology in dry conditions. Cutting force and cutting temperatures are measured during UVABM. Surface roughness is measured with a white light interferometer after UVABM. The experimental results show cutting force and cutting temperature reduce due to ultrasonic vibration, and surface roughness decreases by 34.92%, compared with that got from traditional milling, which indicates UVABM is suitable to process AZ31B for potential biomedical applications.


2012 ◽  
Vol 497 ◽  
pp. 1-5
Author(s):  
Xiao Dan Xie ◽  
Yong Li ◽  
Cam Vinh Duong ◽  
Ahmed Al-Zahrani

Traditionally, single point diamond turning (SPDT) can not process ferreous metals because of acute tool wear. Ultrasonic vibration-assisted cutting(UVC) provides a promising solution for the problem. In this paper, for the aim of directly obtaining mirror surface on die steels, UVC method was used combining with SPDT process. Experiments were carried out on an ultra precision turning machine, cutting parameters and vibration parameters were well-chosen, and two kind of feed rates, two kinds of prevailing die steels were experimented. Mirror surfaces were successfully achieved on face turning, with the best roughness of Ra16.6nm. And the surface roughness, surface texture and tool wear in machining process were discussed.


Author(s):  
Murali M. Sundaram ◽  
Sridevi Billa ◽  
Kamlakar P. Rajurkar

Drilling a micro hole with an aspect ratio above 10 is a challenging task for any-micromachining process. In micro electro discharge machining (micro EDM), a proven metallic micromachining process, this is due to the problems associated with debris removal. In such cases, where the capabilities of existing macro machining methods are constantly being challenged, innovative micro manufacturing approaches are required to make progress. Hybrid micromachining is one such approach in which the synergy of constituent processes is exploited to achieve desired results. In this paper, the results of ultrasonic vibration assisted micro electro discharge machining process are presented. This hybrid process is capable of deep hole drilling with aspect ratio of 20 in austenitic stainless steel by overcoming the limitations in the debris removal faced in the typical micro EDM process. Other benefits of ultrasonic vibration are the savings in machining time, and less tool wear. It is also noticed that the ultrasonic vibration causes some shape distortion and produces rougher machined surface.


2012 ◽  
Vol 445 ◽  
pp. 865-870 ◽  
Author(s):  
Meifal Rusli ◽  
Katsushi Furutani

Electro-chemical discharge machining (ECDM) is one of nontraditional processes for micro-fabrication of non-conductive materials. A high applied voltage is preferable to form a gas film and to generate discharge in the film. However, accumulation of discharge heat often causes cracks of the surface because non-conductive materials have low heat conductivity. In this study, the effect of ultrasonic vibration and the electrolyte level on the performance of gravity-feed drilling by ECDM was investigated. Ultrasonic vibration was applied to a glass plate. A tungsten rod as a tool electrode was fed by gravity. Ultrasonic vibration changed the discharge behavior and improved electrolyte circulation. Although high amplitude ultrasonic vibration caused very dense and wide current pulses consistently during machining process, it decreased removal rate significantly. In addition, electrolyte levels affect single bubble size and the resistance in the electrolyte. Low electrolyte level will cause higher resistance, and higher temperature of the tool electrode and workpiece. A high bias current flew at a low electrolyte level without ultrasonic vibration. In this case, removal rate decreased and surface integrity was improved.


2002 ◽  
Vol 68 (673) ◽  
pp. 2777-2782 ◽  
Author(s):  
Hitomi YAMAGUCHI ◽  
Takeo SHINMURA ◽  
Kenichiro KASAI ◽  
Toshio AIZAWA

2018 ◽  
Author(s):  
Yingbin Hu ◽  
Hui Wang ◽  
Yuanchen Li ◽  
Fuda Ning ◽  
Weilong Cong

The zirconia toughened alumina (ZTA) parts fabricated by laser engineered net shaping (LENS) process demonstrate problems resulted from poor surface quality. To improve surface quality and to reduce related problems, rotary ultrasonic machining (RUM) process, which combines both grinding process and ultrasonic machining process, has been introduced. In this investigation, the effects of ZrO2 content and ultrasonic vibration on flatness, surface roughness, microhardness, and cutting force in feeding direction of LENS-fabricated ZTA parts have been studied. Results showed that with the ZrO2 content increasing, the flatness value increased, the surface roughness value decreased, and the microhardness value firstly increased then decreased. Compared with LENS-fabricated parts, the parts processed by RUM machine exhibited better surface quality with significantly reduced flatness value and surface roughness value. In RUM process, the introduction of ultrasonic vibration was beneficial for reducing cutting force.


2019 ◽  
Vol 53 (26-27) ◽  
pp. 3671-3680 ◽  
Author(s):  
Ali Tabatabaeian ◽  
Mohammad Baraheni ◽  
Saeid Amini ◽  
Ahmad R Ghasemi

Machining process of glass fiber composites usually induces delamination damage. The presence of delamination may cause changes in the mechanical characteristics of the composite structures. In this research, a comprehensive experimental study is performed to analyze the influence of different parameters such as thermal fatigue, lay-up arrangement, resin type, feed rate and cutting velocity on the delamination of glass fiber composites under different drilling processes. Besides, influence of ultrasonic vibration exerting on the tool as a new and high-tech process is investigated. To follow this aim, different composite specimens with various resin types and lay-up arrangements are fabricated and a thermal fatigue condition is provided. Additionally, the Taguchi method is employed to obtain the optimized damage reduction condition in terms of mentioned parameters. The results indicated that thermal fatigue and unsymmetrical lay-up arrangement result in more delamination damage. It was also established that the influence of mentioned parameters is more considerable in higher cutting velocities. Moreover, ultrasonic vibration application is suggested to have the least delamination damage.


Sign in / Sign up

Export Citation Format

Share Document