scholarly journals The Impact of Global Climate Change and Global Warming on Public Health and Welfare Cost From Exposure to Environmental Risks

2019 ◽  
Author(s):  
Rodica Pripoaie ◽  
10.17158/479 ◽  
2016 ◽  
Vol 19 (1) ◽  
Author(s):  
Ma.Teresa M. Gravino ◽  
Princy A. Luga ◽  
Lucila T. Lupo

<p>This study was conducted to determine the demographic profile and the level of awareness of climate literacy and mitigation measures of the residents of six selected coastal areas in Davao City, namely, Sasa 11, Brgy. 76A, Bucana, Matina Aplaya, Talomo, and Gulf View. Further, this study determined the mitigation measures of the respondents in terms of the respondents’ actions. Descriptivecorrelation research design was utilized and a total of four hundred twenty eight randomly selected residents to answer a three part Survey Questionnaire. Pearson product moment coefficient of correlation was used to establish the relationship between the respondents’ awareness on global warming and global climate change and their corresponding mitigation measures.Chi-square tests were used to ascertain the association between the respondents’ demographic profile and awareness on global warming and global climate change; and between the respondents’ demographic profile and their corresponding mitigation measures. Study showed that the respondents’ overall awareness on global warming and global climate is moderate but significantly correlated to their actions to mitigate the impact of these phenomena. Analysis of the results also revealed that among the demographic variables, sex and educational attainment are significantly associated while age, socio-economic status and length of stay in the area are not significantly associated. On the other hand, only age and educational attainment show significant association to the level of awareness on global climate change.Moreover, analysis revealed that, age and educational attainment show significant association while sex, socio-economic status and length of stay do not show significant association to the actions of the respondents to mitigate the impact of global warming and global climate change.</p><p> </p><p><strong>Keywords:</strong> Climate literacy, global warming, global climate change, awareness, descriptive research, Davao City, Philippines.</p>


2016 ◽  
Vol 28 (1) ◽  
Author(s):  
Tumiar Katarina Manik ◽  
Bustomi Rosadi ◽  
Eva Nurhayati

Global warming which leads to climate change has potential affect to Indonesia agriculture activities and production. Analyzing rainfall pattern and distribution is important to investigate the impact of global climate change to local climate. This study using rainfall data from 1976-2010 from both lowland and upland area of Lampung Province. The results show that rainfall tends to decrease since the 1990s which related to the years with El Nino event. Monsoonal pattern- having rain and dry season- still excist in Lampung; however, since most rain fell below the average, it could not meet crops water need. Farmers conclude that dry seasons were longer and seasonal pattern has been changed. Global climate change might affect Lampung rainfall distribution through changes on sea surface temperature which could intensify the El Nino effect. Therefore, watching the El Nino phenomena and how global warming affects it, is important in predicting local climate especially the rainfall distribution in order to prevent significant loss in agriculture productivities.


BUANA SAINS ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 99-110
Author(s):  
I Made Indra Agastya ◽  
Reza Prakoso Dwi Julianto ◽  
Marwoto Marwoto

Global warming has changed global, regional and local climate conditions. Global climate change is caused, among others, by the increase in greenhouse gas emissions (GHG) due to various activities that drive the increase in the earth's temperature. Given that climate is a key element in the metabolic system, plant physiology and crop ecosystems, global climate change will adversely affect the sustainability of agricultural development. The impact of global climate change is the increasing population of pests on agricultural crops. One of the soybean pests whose population is increasing due to the increase in air temperature is the Bemisia tabbaci infestation. Increased pest populations of Bemesia tabbaci infestation in soybean crops cause dwarf leaves of dwarf plants and threatens to increase soybean production. Efforts to overcome the impact of global warming is mainly due to increased pest populations, it is necessary to think and seek breakthroughs to anticipate the explosion of pest populations in soybean crops, among others by: the optimization of natural control, physical and mechanical control and cultivation techniques. The combination of techniques or tactics of the optimal component of soybean pest control technology is established on the basis of appropriate information knowledge about soybean pest, ecosystem and socio-economic based on IPM approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Author(s):  
Viktoriia Sydorenko ◽  

This article is devoted to an overview of such a category of migrants as climate refugees. The author pays attention to the general characteristics of the impact of global climate change on migrants. Particular attention is paid to the disclosure of the term “climate refugee”, the reasons for the emergence of this category of people, as well as the problems of counting climate refugees. The author also provides examples for solving these problems.


2014 ◽  
Vol 937 ◽  
pp. 663-668
Author(s):  
Qiu Jing Li ◽  
Xiao Li Hou ◽  
Li Xue ◽  
Hong Yue Chen ◽  
Yun Ting Hao

Climate change refers to man-made changes in our climate, which is caused by changes in temperature, precipitation, and CO2. There is a lot of data coming from all over the world indicating that phenology of garden plants and biodiversity are being impacted by climate change. In the context of climate change, landscape plants can enhance carbon sink function, improve plant design, and mitigate climate change and so on. To determine the impact of these changes on garden plants, scientists would need to strengthen the study of garden plants under global climate change, including different garden type responses to climate change, invaliding species phenology study, extreme weather impacts on landscape plant phenology, the dominant factor of affecting garden plants in different regions, interactions of multiple environmental factors on influence mechanism of garden plants.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


Sign in / Sign up

Export Citation Format

Share Document