scholarly journals Analisis Injeksi Daya Reaktif Untuk Memperbaiki Faktor Daya Pada Line Instalasi Listrik Gedung Workshop AK-Manufaktur Bantaeng

2021 ◽  
Vol 7 (1) ◽  
pp. 1-4
Author(s):  
Hermansyah Hermansyah

This research is a case study, namely the electrical installation system for AK-Manufacturing Bantaeng fabrication workshops. This study aims to improve the value of cos φ (power factor) from 0.75 to 0.97 and to determine the capacity of the capacitor bank that will be installed on the electrical installation line of the AK-Manufacturing Bantaeng Fabrication Machine workshop building. The problem that occurs is the low value of cos φ (power factor) in the installed electrical system which causes the installed active power to be not maximal. For this reason, a capacitor bank with an adjusted capacity value is needed to provide reactive power injection so that the value of cos φ can be increased from 0.75 to 0.97. This study uses an analysis method to determine the value of reactive power to be injected into the electrical installation system. The results of this study indicate that the required reactive power injection capacity is 12 KVar or 12,000 Var. This value is sufficient to improve the power factor from 0.75 to 0.97. This means that the electrical installation system is more optimal.

2020 ◽  
Vol 1 (2) ◽  
pp. 21-28
Author(s):  
Haimi Ardiansyah

Haimi Ardiansyah Akademi Komunitas Negeri Aceh Barat _________________________ Abstract Penelitian ini membahas tentang pengaruh penggunaan kapasitor bank pada penyulang kota di PT. PLN (Persero) Rayon Meulaboh Kota. Pendistribusian tenaga listrik yang stabil adalah syarat mutlak yang harus dipenuhi PT. PLN (Persero) dalam menjawab kebutuhan konsumen. Bertambahnya beban yang bersifat induktif akan berpengaruh pada penurunan nilai faktor daya pada sistem kelistrikan. Selanjutnya kondisi ini juga akan membutuhkan daya reaktif yang sangat besar sehingga pembangkit listrik harus menyalurkan daya yang lebih besar. Salah satu upaya untuk memperbaiki faktor daya adalah dengan menambahkan beban kapasitif. Perbaikan faktor daya pada penyulang kota dengan menggunakan kapasitor bank bertujuan untuk meningkatkan daya aktif sehingga mendekati dengan daya semu yang diproduksi PT. PLN. Penggunakan kapasitor bank ini diharapkan mampu menurunkan daya reaktif dan memperbaiki faktor daya pada penyulang kota. Keywords: Daya Listrik, Daya Reaktif, Faktor daya, Kapasitor Bank __________________________ Abstrak The study discusses the effect of installing bank capacitor on city electric feeder at PT. PLN (Persero) Rayon Meulaboh Kota. Stable electric supply is an absolute requirement that must be met by PT. PLN (Persero) in answering consumer needs. The increase of inductive loads will affect the decrease power factor value in the electrical system. Furthermore, this condition will also require a very large reactive power so that power plants have to supply more electric power. Installing capacitive loads is one of the best options in improving the power factor. The improvement of power factor in city feeders using capacitor banks aims to increase the active power to get close to the apparent power which is produced by PT. PLN (Persero). In short, the use of capacitor banks is expected to reduce reactive power and improve the power factor in city feeders. Kata Kunci: Electric Power, Reactive Power, Power Factor, Capacitor Bank __________________________


2014 ◽  
Vol 533 ◽  
pp. 397-400 ◽  
Author(s):  
Chi Jui Wu ◽  
Yu Wei Liu ◽  
Shou Chien Huang

To modify the power factor and balance the three-phase currents simultaneously, this paper proposes the instantaneous compensator to calculate the compensation current. The instantaneous compensator utilizes two-dimensional instantaneous space vector and setting the active power as a constant for each cycle which can improve power quality effectively. Moreover, the instantaneous compensator requires an independent power source, whose capacity can be reduce by using a static var compensator (SVC). An SVC does not interfere with the capability of the instantaneous compensator. Field measurement data were analyzed. Simulation results confirmed the feasibility of correcting the power factor and balancing load currents simultaneously using the proposed method.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6244
Author(s):  
Anderson Rodrigo Piccini ◽  
Geraldo Caixeta Guimarães ◽  
Arthur Costa de Souza ◽  
Ana Maria Denardi

The main objective of this research is to propose an active and reactive power injection control in order to mitigate voltage sags. The proposed control strategy works in conjunction with a modified version of an automatic voltage regulator (AVR), where it will act on the active and reactive powers injected by the inverter to reduce the effects of voltage sags. In this way, the control will avoid possible shutdowns and damage to the equipment connected to the grid. The voltage improvement can be perceived for consumers connected to the power system. Modifications in AVR model and parameters are performed to speed up its performance, thus identifying the short-duration voltage variations (SDVV) and, consequently, the control acts to alter the powers, decreasing the active power injection and increasing the reactive power based on inverter capacity during the momentary voltage dip (MVD). Finally, when the fault is cleared, all values return to the pre-fault condition, so that the inverter only operates with active power. A 75 kW three-phase grid-connected photovoltaic system (GCPVS) equipped with the proposed control was inserted in a distribution grid of the city of Palmas, state of Tocantins, Brazil, and all of the computer simulations were performed on the Matlab/Simulink®.


2016 ◽  
Vol 85 ◽  
pp. 854-864 ◽  
Author(s):  
Leonardo P. Sampaio ◽  
Moacyr A.G. de Brito ◽  
Guilherme de A. e Melo ◽  
Carlos A. Canesin

2013 ◽  
Vol 291-294 ◽  
pp. 2340-2345
Author(s):  
Zheng Rong Jiang ◽  
Dong Ming Ma

There are three sampling methods for reactive power compensation controller, including active power factor detecting, reactive power detecting and reactive current detecting. This paper describes the power factor detecting, which use the avr microcontroller to detect load power factor, besides, the principles and characteristics of two different detection methods are presented, the detecting accuracy is compared between the same phase detecting method and using FFT algorithm.


SIMULATION ◽  
2017 ◽  
Vol 93 (6) ◽  
pp. 515-525 ◽  
Author(s):  
Mohammad Reza Asban ◽  
Jamshid Aghaei ◽  
Taher Niknam ◽  
Mohammad Amin Akbari

This paper introduces a method for reducing damages arising from voltage fluctuations, voltage flicker, imbalance in the three-phase and power factor reduction caused by electric arc furnaces. A novel equation is defined to calculate the susceptance values of the static var compensator control system, the active power functions of phase load as well as the reactive power ones that have been used to suppress the voltage fluctuation. By compensating the impulsive part of active power component in the impulsive loads, not only can we reduce voltage fluctuations, flicker effects, balance the system and increase the power factor, but also voltage stabilization can be directly controlled. By studying this method and simulating on Electro-Magnetic Transients Program (EMTP) software, we can see that, according to the allowable flicker limit, a compensation method can balance the system, increase power factor and resolve the problem of voltage fluctuations and flicker.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 896
Author(s):  
Chamberlin Stéphane Azebaze Mboving

The use of passive harmonic filters (PHFs) in an electrical system is in most cases for the fundamental harmonic reactive power compensation and harmonics mitigation. In comparison to other filters applied to improve the power quality, such as the shunt active power filter or hybrid active power filter, their main advantages are the low investment costs and easy applicability in low-, medium-, and high-voltage electrical systems. However, their installation demands a deep analysis of the electrical system as well as a thorough knowledge of the topology to be installed. Their work efficiency is influenced by the parameters of the electrical system (grid, load, and filter itself) which must be well-known before installation. The aim of this paper is to present an investigation on the work efficiency of the LC passive harmonic filter chosen topologies. The PHFs are investigated in the frequency domain through their impedance versus frequency characteristics as well as in the time domain through an electrical system. A comparative study between filters is also considered. The investigations on the case examples of PHFs are based on simulations and some laboratory studies are also presented.


2021 ◽  
pp. 17-25
Author(s):  
L. Kovernikova ◽  
N.H. Bui ◽  
T.C. Ha ◽  
D.T. Pham ◽  
L. Semenova ◽  
...  

The coal grading plants in Viet Nam extensively apply induction motors. Induction motors consume active and reactive power from the power supply systems. The reactive power flowing through the electrical network creates active power losses. The reactive power received from power utilities reduces the load power factor at the node where coal sorting plants are connected to the supply network. Frequency-controlled induction motors introduce distortions into the electrical network because they are electrical equipment with a nonlinear current-voltage characteristic. Non-sinusoidal current and voltage cause additional losses of active power in the electrical network and electrical equipment, thereby shortening its service life, reducing the reliability of operation, and causing economic damage. Active filters can solve these problems. The paper proposes an optimization algorithm for determining the apparent power of the active filter, which provides the load power factor and power quality indices corresponding to the regulatory documents. The algorithm is used to calculate the apparent power of the active filter for the coal grading plant owned by the Vietnamese company “Cua Ong-Vinacomin."


Author(s):  
Majid Ali ◽  
Faizan Rashid ◽  
Saim Rasheed

For all industrial and distribution sites, the lagging power factor of electrical loads is a common problem. In the early days, it was corrected manually by adding the capacitor banks of certain values in parallel. Automatic power factor correction (APFC) using a capacitor bank helps to make a power factor that is close to unity. It consists of a microcontroller that processes the value of the power factor to enable the system and monitor the power factor if it falls below (0.77) from the specified level. This paper presents the automatic correction of the power factor by adding the capacitors banks automatically of the desired value in a three-phase system in the form of binary coding (0-7). The main purpose of this system is to maintain the power factor as close as to unity, for the experimental case, it is set to (0.93) which helps to decreases the losses and ultimately increase the efficiency of the system.


Sign in / Sign up

Export Citation Format

Share Document