scholarly journals STRESS-STRAIN BEHAVIOR OF HIGH-STRENGTH CONCRETE REINFORCED WITH POLYPROPYLENE FIBERS

Author(s):  
Г.Д. Ляхевич ◽  
В.А. Гречухин ◽  
С. Мотамеди

Целью настоящего исследования является исследование влияния полипропиленовых волокон, вводимых в бетонную смесь, на прочностные характеристики и снижение эффекта взрывного откалывания в бетоне, при повышении температуры. Полипропиленовая фибраобразует в бетоне трехмерный армирующий каркас, который воспринимает растягивающие усилия. Ее применение повышает долговечность, снижает истираемость поверхности, повышает ударную вязкость, устраняет усадку, предупреждает образование трещин, повышает морозостойкость. Для приготовления бетонной смеси использовали следующие компоненты: цемент марки М-500, песок кварцевый, щебень, микрокремнезем, суперпластификатор, вода, полипропиленовая фибра. Водоцементное отношение в испытании составило от 0,23 до 0,32. С целью изучения влияния температуры на прочностные характеристики высокопрочного бетона приготовили 16 составов бетонной смеси. Образцы нагревали до температуры 800 °С при скорости нагрева около 20 °С в минуту. После достижения данной температуры образцы в течение 24 часов медленно остывали до комнатной температуры, после чего измерялось снижение их массы и остаточное сопротивление на сжатие. При нагревании образцов в интервале температур от 160 °С до 180 °С в бетоне с ППВ происходит образование каналов, по которым при дальнейшем нагревании выходит пар. Испытания показали, что в образцах с полипропиленовым волокном (ППВ) не наблюдается эффекта взрывного откалывания. Полипропиленовые волокна уменьшают потерю сопротивления, и устраняют хрупкое разрушение. В исследовании изучено влияние длины и количества ППВ на прочность бетона на сжатие. Использование полипропиленовых волокон повышает огнестойкость и хрупкость высокопрочного бетона, способствует его вязкому разрушению. Образцы бетона без ППВ после нагружения полностью разрушились, тогда, как образцы бетона с ППВ при аналогичной нагрузке сохранили свою геометрию. Введение волокна в высокопрочный бетон способствует повышению прочности на сжатие и термостойкости образцов. После расплавления волокон, образовались капилляры, через которые пар может выйти из массива бетона, предотвращая, таким образом, взрывное откалывание бетона. The purpose of this study is to study the effect of poly-propylene fibers introduced into the concrete mix on the strength characteristics and reduction of the effect of explosive chipping in concrete when the temperature increases. Polypropylene fiber forms a three-dimensional reinforcing frame in concrete that accepts tensile forces. Its use increases durability, reduces surface abrasion, increases impact strength, eliminates shrinkage, prevents the formation of cracks, and increases frost resistance. The following components were used to prepare the concrete mix: M-500 cement, quartz sand, crushed stone, microsilicon, superplasticizer, water, polypropylene fiber. The water-cement ratio in the test was from 0.23 to 0.32. In order to study the effect of temperature on the strength characteristics of high-strength concrete, 16 concrete mix compositions were prepared. The samples were heated to a temperature of 800 °C at a heating rate of about 20 °C per minute. After reaching this temperature, the samples were slowly cooled to room temperature for 24 hours, after which the decrease in their mass and residual compressive resistance were measured. When samples are heated in the temperature range from 160 °C to 180 °C in concrete with PPV, channels are formed through which steam escapes during further heating. Tests have shown that there is no explosive chipping effect in samples with polypropylene fiber (PPV). Polypropylene fibers reduce the loss of resistance, and eliminate brittle fracture. The study examined the effect of the length and amount of PPV on the compressive strength of concrete. The use of polypropylene fibers increases the fire resistance and brittleness of high-strength concrete, contributes to its viscous destruction. Samples of concrete without PPV after loading completely collapsed, while samples of concrete with PPV under a similar load retained their geometry. The introduction of fiber into high-strength concrete increases the compressive strength and heat resistance of samples. After melting the concrete, capillaries were formed through which steam can escape from the concrete mass, thus preventing explosive chipping of the concrete.

2013 ◽  
Vol 357-360 ◽  
pp. 1328-1331
Author(s):  
Bai Rui Zhou ◽  
Dong Dong Han ◽  
Jian Hua Yang ◽  
Yi Liang Peng ◽  
Guo Xin Li

Portland cement, crushed stone, sand and superplasticizer were used to obtain a high strength concrete with a low water to binder ratio. A reticular polypropylene fiber and a single polypropylene fiber were used to improve the strength of the high strength concrete, but the effects of the two fibers on the slump and strengths were quite different. The reasons of the differences were the surface area and the modulus of elasticity of the fibers. The results show the reticular fiber was better to used in high strength concretes.


The main aim of this work was to investigate the influence of widely used steel fibers and polypropylene fibers on the concrete. From many studies it has been shown that, addition of fibers to the concrete has influenced the cracking of concrete, due to shrinkage, thermal insulation and bleeding of water. So, in this study we made use of ultra high strength concrete mix of M50, and we made use of both steel as well as polypropylene fibers to enhance the properties of the concrete. In this study total five concrete mixes were made with steel fiber in dosages of 2.5%, 2%, 1.5%, 1% and polypropylene fibers are in dosage 0%, 0.5%, 1%, 1.5% of the weight of concrete mix. The specimens were casted and all the specimens are tested for 7days and 28 days strength. The results have depicted a gradual increase in the strength of the concrete as the fiber content increased


2020 ◽  
Vol 26 (1) ◽  
pp. 118-127
Author(s):  
Teuku Budi Aulia ◽  
Muttaqin Muttaqin ◽  
Mochammad Afifuddin ◽  
Zahra Amalia

High-strength concrete is vulnerable to high temperatures due to its high density. The use of polypropylene fibers could prevent structure explosion by forming canals due to melted fibers during fire, thus release its thermal stress. This study aims to determine the effect of polypropylene fibers on compressive strength of high-strength concrete after combustion at 400ºC for five hours. High-strength concrete was made by w/c-ratio 0.3 with cement amount 550 kg/m3 and added with silica fume 8% and superplasticizer 4% by cement weight. The variations of polypropylene fibers were 0%, 0.2% and 0.4% of concrete volume. The compression test was carried out on standard cylinders Ø15/30 cm of combustion and without combustion specimens at 7 and 28 days. The results showed that compressive strength of high-strength concretes without using polypropylene fibers decreased in post-combustion compared with specimens without combustion, i.e., 0.81% at 7 days and 23.42% at 28 days. Conversely, the use of polypropylene fibers can increase post-combustion compressive strength with a maximum value resulted in adding 0.2% which are 25.52% and 10.44% at 7 and 28 days respectively. It can be concluded that the use of polypropylene fibers is effective to prevent reduction of high-strength concrete compressive strength that are burned at high temperatures.


2012 ◽  
Vol 204-208 ◽  
pp. 3809-3814 ◽  
Author(s):  
Xi Liang Liu ◽  
Shao Feng Liu ◽  
Ben Dong Qin ◽  
Da Fang Yang

Design 6 different dosages of C70 hybrid fiber high-strength concrete and a group of ordinary-strength concrete C70. By test of compressive strength and splitting tensile strength, discovery the high-strength hybrid fiber concrete compressive strength is not increasing trend; tensile strength increases significantly, average up to 5.12MPa, tension and compression ratio increased by 12%~40%; specimens eventually destroying the near ductility failure, in the case of 1.2% volume dosage of steel fiber and 0.10% volume dosage of polypropylene fiber, tension and compression ratio reach to 0.0683, hybrid fiber high-strength concrete showed good mixing effect, in the large-scale concrete construction has a certain spread value.


2017 ◽  
Vol 8 (4) ◽  
pp. 402-417 ◽  
Author(s):  
Duncan Cree ◽  
Prosper Pliya ◽  
Mark F. Green ◽  
Albert Noumowé

Purpose The purpose of this paper is to evaluate high strength concrete (HSC) containing polypropylene fibers (PP-fibers) at high temperature under a compressive load. Design/methodology/approach The use of PP fibers in HSC is known to reduce and at times eliminate the risk of spalling. HSC containing 0, 1 and 2 kg/m3 of PP-fibers were subjected to various temperatures from 20°C to 150°C, 300°C and 450°C and evaluated in a “hot condition”. One group of specimens was in a non-stressed condition during heating (unstressed hot), while a second group was subjected to an initial preload of 40 per cent of the room temperature compressive strength during the heating (stressed hot). Findings Results showed that stressed concrete containing PP-fibers had lower thermal gradients (the temperature difference between the surface and center temperatures as a function of radial distance) and a decrease in relative porosity. However, the compressive strength of stressed specimens was improved with or without fibers as compared to that of the unstressed HSC. The increased stress levels due to concrete expansion at elevated temperature were also reported. The PP-fibers did not have a significant effect on the compressive strength of stressed concrete as compared to the unstressed state. Originality/value This paper reports the compressive strength of PP-fibers in HSC at elevated temperature with and without a pre-load.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2014 ◽  
Vol 567 ◽  
pp. 381-386 ◽  
Author(s):  
Nasir Shafiq ◽  
Muhd Fadhil Nuruddin ◽  
Ali Elheber Ahmed Elshekh ◽  
Ahmed Fathi Mohamed Salih

In order to improve the mechanical properties of high strength concrete, HSC, several studies have been conducted using fly ash, FA. Researchers have made it possible to achieve 100-150MPa high strength concrete. Despite the popularity of this FAHSC, there is a major shortcoming in that it becomes more brittle, resulting in less than 0.1% tensile strain. The main objective of this work was to evaluate the fresh and hardened properties of FAHSC utilizing chopped basalt fiber stands, CBFS, as an internal strengthening addition material. This was achieved through a series of experimental works using a 20% replacement of cement by FA together with various contents of CBFS. Test results of concrete mixes in the fresh state showed no segregation, homogeneousness during the mixing period and workability ranging from 60 to 110 mm. Early and long terms of compressive strength did not show any improvement by using CBFS; in fact, it decreased. This was partially substituted by the effect of FA. Whereas, the split and flexural strengths of FASHC were significantly improved with increasing the content of CBFS as well as the percentage of the split and flexural tensile strength to the compressive strength. Also, test results showed a progressive increase in the areas under the stress-strain curves of the FAHSC strains after the CBFS addition. Therefore, the brittleness and toughness of the FAHSC were enhanced and the pattern of failure moved from brittle failure to ductile collapse using CBFS. It can be considered that the CBFS is a suitable strengthening material to produce ductile FAHSC.


Sign in / Sign up

Export Citation Format

Share Document