Experimental Study on Mechanical Properties of Hybrid Fiber High-Strength Concrete

2012 ◽  
Vol 204-208 ◽  
pp. 3809-3814 ◽  
Author(s):  
Xi Liang Liu ◽  
Shao Feng Liu ◽  
Ben Dong Qin ◽  
Da Fang Yang

Design 6 different dosages of C70 hybrid fiber high-strength concrete and a group of ordinary-strength concrete C70. By test of compressive strength and splitting tensile strength, discovery the high-strength hybrid fiber concrete compressive strength is not increasing trend; tensile strength increases significantly, average up to 5.12MPa, tension and compression ratio increased by 12%~40%; specimens eventually destroying the near ductility failure, in the case of 1.2% volume dosage of steel fiber and 0.10% volume dosage of polypropylene fiber, tension and compression ratio reach to 0.0683, hybrid fiber high-strength concrete showed good mixing effect, in the large-scale concrete construction has a certain spread value.

2021 ◽  
Vol 1160 ◽  
pp. 25-43
Author(s):  
Naglaa Glal-Eldin Fahmy ◽  
Rasha El-Mashery ◽  
Rabiee Ali Sadeek ◽  
L.M. Abd El-Hafaz

High strength concrete (HSC) characterized by high compressive strength but lower ductility compared to normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. Nanomaterials have gained increased attention because of their improvement of mechanical properties of concrete. In this paper we present an experimental study of the flexural behavior of reinforced beams composed of high-strength concrete and nanomaterials. Eight simply supported rectangular beams were fabricated with identical geometries and reinforcements, and then tested under two third-point loads. The study investigated the concrete compressive strength (50 and 75 N/mm2) as a function of the type of nanomaterial (nanosilica, nanotitanium and nanosilica/nanotitanium hybrid) and the nanomaterial concentration (0%, 0.5% and 1.0%). The experimental results showed that nano particles can be very effective in improving compressive and tensile strength of HSC, nanotitanium is more effective than nanosilica in compressive strength. Also, binary usage of hybrid mixture (nanosilica + nanotitanium) had a remarkable improvement appearing in compressive and tensile strength than using the same percentage of single type of nanomaterials used separately. The reduction in flexural ductility due to the use of higher strength concrete can be compensated by adding nanomaterials. The percentage of concentration, concrete grade and the type of nanomaterials, could predominantly affect the flexural behavior of HSRC beams.


2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


2019 ◽  
Vol 8 (2) ◽  
pp. 5306-5310

Becoming modern waste have discovered the need to transfer of mechanical waste, The waste that must be arranged would two be able to be spared to use in some way, among the two modern waste preparing cementatious nature substances can be supplanted as folio include number in cement to separated. Ground Granulated Blast Furnaces Slag (GGBS) which used to be squander from an iron assembling industry, which used to be utilized as substitute of bond in cement because of its characteristic solidifying properties. To increase the strength of the concrete some of the special cements are used. Due to various codal specifications the binding material replacements of GGBS have been restricted up to 80% in maximum. In this project replacement of GGBS is done by an amount of 10% ,20% ,30% and 40%. In accordance with above restrictions the replacement variations in binding material have been decoded in a high strength concrete mixture. The research work have been extensively executed in almost all areas of testing like compressive strength , spilt tensile strength, and flexural strength, and also various primary tests like specific gravity , granular gradation etc. have also been excited to achieve high strength concrete.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4011
Author(s):  
Evgeny V. Shilko ◽  
Igor S. Konovalenko ◽  
Ivan S. Konovalenko

It is well-known that the effect of interstitial fluid on the fracture pattern and strength of saturated high-strength concrete is determined by qualitatively different mechanisms at quasi-static and high strain rate loading. This paper shows that the intermediate range of strain rates (10−4 s−1 < ε˙ < 100 s−1) is also characterized by the presence of a peculiar mechanism of interstitial water effect on the concrete fracture and compressive strength. Using computer simulations, we have shown that such a mechanism is the competition of two oppositely directed processes: deformation of the pore space, which leads to an increase in pore pressure; and pore fluid flow. The balance of these processes can be effectively characterized by the Darcy number, which generalizes the notion of strain rate to fluid-saturated material. We have found that the dependence of the compressive strength of high-strength concrete on the Darcy number is a decreasing sigmoid function. The parameters of this function are determined by both low-scale (capillary) and large-scale (microscopic) pore subsystems in a concrete matrix. The capillary pore network determines the phenomenon of strain-rate sensitivity of fluid-saturated concrete and logistic form of the dependence of compressive strength on strain rate. Microporosity controls the actual boundary of the quasi-static loading regime for fluid-saturated samples and determines localized fracture patterns. The results of the study are relevant to the design of special-purpose concretes, as well as the assessment of the limits of safe impacts on concrete structural elements.


2021 ◽  
Vol 45 (4) ◽  
pp. 351-359
Author(s):  
Noor Alhuda Sami Aljabbri ◽  
Mohammed Noori Hussein ◽  
Ali Abdulmohsin Khamees

Fire or high temperature is a serious issue to ultra-high-strength concrete (UHSC). Strength reduction of UHPCs may amount to as high as 80 percent after exposure to 800℃. A sum of four UHSC mixes was synthesized and evaluated in this study after getting exposed to extreme temperatures that reach 1000°C. Steel and polypropylene (PP) fibers were used in this experiment. A total of four mixes were made of UHSC without fibres as a control mix (UHSC-0), UHSC with 2% steel fibres (UHSC-S), UHSC with 2% PP fibres (UHSC-P) and UHSC with 1% steel fibres + 1% PP fibres (UHSC-SP). Workability, direct tensile strength, compressive strength, and splitting tensile strength were examined. Particularly, emphasis was devoted to explosive spalling since UHPCs are typically of compact structure and hence more prone to explosive spalling than other concretes. It was determined that the mixture UHSC-SP had high fire resistance. Following exposure to 1000℃, this mixture preserved a residual compressive strength of 36 MPa, splitting tensile strength of 1.62 MPa and direct tensile strength of 0.8 MPa. On the other hand, UHSC-P also had good fire resistance while UHSC-0 and UHSC-S experienced explosive spalling after heating above 200ᴼC. The incorporation of steel fibers in UHSC-S and UHSC-SP mixtures reveals higher tensile and compressive strength findings at different elevated temperatures as compared to UHSC-0 and UHSC-P. In addition, the result of direct tensile strength appears to be lower than splitting tensile strength at different raised temperatures.


2012 ◽  
Vol 174-177 ◽  
pp. 1388-1393
Author(s):  
Hai Qing Song ◽  
Teng Long Zheng

Plain concrete is susceptible to cracking under aggressive environment such as in freezing shaft. And addition of steel fibres in plain high strength concrete is proved to be effective in cracking resistance and brittleness improvement, etc. This paper presents results of experimental investigation carried out to study the mechanical properties of steel fibre-reinforced concrete having volume fractions of 0.38%, 0.51% and 0.64% for two types of fibres respectively. The results of this study revealed that there is an increase for all the mechanical properties such as compressive strength, split tensile strength, modulus of elasticity and flexural strength. Enhancement for split tensile strength and flexural strength is more evident than compressive strength.


2010 ◽  
Vol 150-151 ◽  
pp. 996-999
Author(s):  
Chang Wang Yan ◽  
Jin Qing Jia ◽  
Ju Zhang ◽  
Rui Jiang

The marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) with compressive strength of 100 MPa can be overcome by the addition of polyvinyl alcohol (PVA) fibers. The compressive strength and splitting tensile strength of ultra high strength concrete containing PVA fibers are investigated this paper. The PVA fibers were added at the volume fractions of 0%, 0.17%, 0.25%, 0.34% and 0.5%. The compressive strength of the PVA fiber reinforced ultra high strength concrete (PFRC) reached a maximum at 0.5% volume fraction, being an 8.2% improvement over the UHSC. The splitting tensile strength of the PFRC improved with increasing the volume fraction, achieving 46.7% improvements at 0.5% volume fraction. The splitting strength models were established to predict the compressive and splitting tensile strengths of the PFRC. The models give predictions matching the measurements.


Author(s):  
Г.Д. Ляхевич ◽  
В.А. Гречухин ◽  
С. Мотамеди

Целью настоящего исследования является исследование влияния полипропиленовых волокон, вводимых в бетонную смесь, на прочностные характеристики и снижение эффекта взрывного откалывания в бетоне, при повышении температуры. Полипропиленовая фибраобразует в бетоне трехмерный армирующий каркас, который воспринимает растягивающие усилия. Ее применение повышает долговечность, снижает истираемость поверхности, повышает ударную вязкость, устраняет усадку, предупреждает образование трещин, повышает морозостойкость. Для приготовления бетонной смеси использовали следующие компоненты: цемент марки М-500, песок кварцевый, щебень, микрокремнезем, суперпластификатор, вода, полипропиленовая фибра. Водоцементное отношение в испытании составило от 0,23 до 0,32. С целью изучения влияния температуры на прочностные характеристики высокопрочного бетона приготовили 16 составов бетонной смеси. Образцы нагревали до температуры 800 °С при скорости нагрева около 20 °С в минуту. После достижения данной температуры образцы в течение 24 часов медленно остывали до комнатной температуры, после чего измерялось снижение их массы и остаточное сопротивление на сжатие. При нагревании образцов в интервале температур от 160 °С до 180 °С в бетоне с ППВ происходит образование каналов, по которым при дальнейшем нагревании выходит пар. Испытания показали, что в образцах с полипропиленовым волокном (ППВ) не наблюдается эффекта взрывного откалывания. Полипропиленовые волокна уменьшают потерю сопротивления, и устраняют хрупкое разрушение. В исследовании изучено влияние длины и количества ППВ на прочность бетона на сжатие. Использование полипропиленовых волокон повышает огнестойкость и хрупкость высокопрочного бетона, способствует его вязкому разрушению. Образцы бетона без ППВ после нагружения полностью разрушились, тогда, как образцы бетона с ППВ при аналогичной нагрузке сохранили свою геометрию. Введение волокна в высокопрочный бетон способствует повышению прочности на сжатие и термостойкости образцов. После расплавления волокон, образовались капилляры, через которые пар может выйти из массива бетона, предотвращая, таким образом, взрывное откалывание бетона. The purpose of this study is to study the effect of poly-propylene fibers introduced into the concrete mix on the strength characteristics and reduction of the effect of explosive chipping in concrete when the temperature increases. Polypropylene fiber forms a three-dimensional reinforcing frame in concrete that accepts tensile forces. Its use increases durability, reduces surface abrasion, increases impact strength, eliminates shrinkage, prevents the formation of cracks, and increases frost resistance. The following components were used to prepare the concrete mix: M-500 cement, quartz sand, crushed stone, microsilicon, superplasticizer, water, polypropylene fiber. The water-cement ratio in the test was from 0.23 to 0.32. In order to study the effect of temperature on the strength characteristics of high-strength concrete, 16 concrete mix compositions were prepared. The samples were heated to a temperature of 800 °C at a heating rate of about 20 °C per minute. After reaching this temperature, the samples were slowly cooled to room temperature for 24 hours, after which the decrease in their mass and residual compressive resistance were measured. When samples are heated in the temperature range from 160 °C to 180 °C in concrete with PPV, channels are formed through which steam escapes during further heating. Tests have shown that there is no explosive chipping effect in samples with polypropylene fiber (PPV). Polypropylene fibers reduce the loss of resistance, and eliminate brittle fracture. The study examined the effect of the length and amount of PPV on the compressive strength of concrete. The use of polypropylene fibers increases the fire resistance and brittleness of high-strength concrete, contributes to its viscous destruction. Samples of concrete without PPV after loading completely collapsed, while samples of concrete with PPV under a similar load retained their geometry. The introduction of fiber into high-strength concrete increases the compressive strength and heat resistance of samples. After melting the concrete, capillaries were formed through which steam can escape from the concrete mass, thus preventing explosive chipping of the concrete.


Sign in / Sign up

Export Citation Format

Share Document