DEVICES FOR EXPERIMENTAL EVALUATING THE LOAD OF THE FIELD FLEET VEHICLES’ WORKING UNITS BY THE METHOD OF STRAIN GAUGING

2020 ◽  
Vol 15 (7) ◽  
pp. 980-990 ◽  
Author(s):  
A.F. Rogachev ◽  
◽  
A.A. Karsakov ◽  
R.A. Kosulnikov ◽  
D.S. Gapich ◽  
...  

The efficiency of a field fleet unit is largely determined by the characteristics of the traction resistance of an agricultural machine, which are of a probabilistic nature and require experimental determination. The disadvantage of the known devices that provide measurements during the volumetric dynamometry of the working bodies of tillage machines and implements is the complexity of the design and a significant measurement error. To increase the accuracy of measurements of the dynamic loading of the working bodies of tillage machines, it is necessary to improve the measuring instruments that ensure the reduction of the error. The experimental determination of the loading of the working bodies requires the use of force sensors acting on the working bodies in different planes. Force transducers are mainly manufactured using strain gages, which are glued directly to parts with various cross-sections. To determine the efforts in the rods of the hydraulic linkage system of agricultural tractors use strain gauge fingers, which are cylinders with strain gages glued to them. It is shown that at equal distances l1 and l2 of the location of the sensors, the resulting signal does not depend on the l0 distance of force application on the axis of the finger. Typically, the calibration of force sensors is carried out on additional devices one by one under conditions as close as possible to real ones. The best calibration results will be when all sensors (strain gauge fingers) are installed in their original places and all sensors are calibrated at once. To do this, the intermediate plate is fixed with the help of tension fingers on the hydraulic tractor levers. Eyebolts are installed on the plate, to which a known force Р is applied three times and readings are taken from each of the strain gauge fingers. By solving the resulting system of equations, for example, using the Gauss method in the MathCad environment, all the calibration coefficients are simultaneously found. Additionally, a device is proposed, the kinematic diagram of which allows the use of a single measuring device, which simplifies the technology of measuring the force on the working body and increases its accuracy.

2020 ◽  
Vol 86 (7) ◽  
pp. 39-44
Author(s):  
K. V. Gogolinsky ◽  
A. E. Ivkin ◽  
V. V. Alekhnovich ◽  
A. Yu. Vasiliev ◽  
A. E. Tyurnina ◽  
...  

Thickness is one of the key indicators characterizing the quality and functional properties of coatings. Various indirect methods (electromagnetic, radiation, optical) most often used in practice to measure thickness are based on the functional dependence of a particular physical parameter of the system «base – coating» on the coating thickness. The sensitivity of these procedures to the certain properties of coatings imposes the main restriction to the accuracy of measurements. Therefore, the development and implementation of the approaches based on direct measurements of geometric parameters of the coating appears expedient. These methods often belong to the class of «destructive» and, in addition to measuring instruments, require the use of special equipment. To ensure the uniformity of measurements in the laboratory or technological control, these methods are isolated as a separate procedure (method) and must undergo metrological certification in accordance with GOST R 8.563–2009. We present implementation, metrological certification and practical application of the method for measuring thickness of coatings by crater-grinding method. The principles of technical implementation of test equipment, measurement procedure and calculation formulas are described. The results of evaluating the accuracy indicators of the proposed procedure by calculation and experimental methods are presented. In both cases, the relative error did not exceed 6%. The applicability of the developed technique is shown for a wide range of coating materials (from soft metals to superhard ceramics) of different thickness (with from units to hundreds of micrometers). Apart from the goals of process control and outgoing inspection, the method can be recommended as a reference measurement procedure for calibration of measures and adjusting samples for various types of thickness gauges.


Author(s):  
Tossenko O.M.

The development of measuring instruments requires a specialist to know the principles of operation of advanced measuring systems. This article describes guidelines for creating a virtual appliance in LabVIEW. LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a graphical application programming environment used as a standard tool for measuring, analyzing their data, further ma­ naging devices and objects under study. LabVIEW language is not like other programming languages. It does not create a program, but a virtual tool, designed not only for the simulation of certain processes, but also for the management of hardware and the study of real physical objects. The article deals with the task of designing application software for a specific information-measuring device, analyzes the capabilities of the LabVIEW environment for spectral analysis of various signals, outlines the basic principles and techniques of programming within the framework of the LabVIEW graphical environment during the basic stages of development. The procedure for creating a virtual device is described, which allows to evaluate the spectral composition of the signals, presents a graphical code of execution (diagram) to the program and a graphical tool interface of the virtual device. A number of basic elements used to develop the program are described. The simplicity of the graphic designs, the ease of installation on the field of the program, the clarity and readability of the program — all of which makes LabVIEW preferred over other languages of programming. In most cases, the experiment is the only source of reliable information. And the result is achieved much faster than the methods of "pure" theory. The article substantiates the effectiveness of using a development tool that allows to obtain a software product and ensure the fulfillment of all the basic functions of an automated system. Developing a software algorithm for calculating statistical parameters will help engineering students understand the order of determining spectral characteristics and their place in the structure of experimental research.


2016 ◽  
Vol 693 ◽  
pp. 1562-1566
Author(s):  
Xiao Sheng Wang ◽  
Xue Bin Liu ◽  
Wei Zhao

For existing disadvantage in gear measuring instruments, such as single measure, complex operation, expensive, and so on, in the paper primary and secondary coordinate system are established based on the theoretic of positioning coordinates and gear, then the introduction of feedback measuring device can be integrated in the design of a manufacturing new gear during the measurement center.


2021 ◽  
pp. 16-21
Author(s):  
Kirill Yu. Solomentsev ◽  
Vyacheslav I. Lachin ◽  
Aleksandr E. Pasenchuk

Several variants of half division two-dimensional method are proposed, which is the basis of a fundamentally new approach for constructing measuring instruments for sinusoidal or periodic electrical quantities. These measuring instruments are used in the diagnosis of electric power facilities. The most general variant, called midpoint method, is considered. The proposed midpoint method allows you to measure much smaller than using widespread methods, alternating currents or voltages, especially when changing the amplitude of the measured signal in very wide ranges, by 1–2 orders of magnitude. It is shown that using the midpoint method it is possible to suppress sinusoidal or periodic interference in the measuring path, in particular, to measure small alternating current when sinusoidal or periodic interference is 1–2 orders of magnitude higher than the useful signal. Based on the results of comparative tests, it was found that the current measuring device implementing the midpoint method is an order of magnitude more sensitive than the currently used high-precision measuring instruments.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 1035
Author(s):  
Rustem R. Ziyatdinov ◽  
Leisan R. Zakirova

Most modern technical tasks require high precision measurements. To do this, it is necessary to analyze the causes of errors and take measures to reduce their influence on the accuracy of measurements. The causes of errors are very diverse and cannot always be identified. However, some systematic components of the measurement error can be described and calculated mathematically. In this case, the task of reducing the signal at the output of a measuring device to the form it would have when using an “ideal” device is reduced to calculating a certain linear operator which product to the measured signal allows obtaining the minimum systematic error. In this paper, the application of the reduction method is given by the example of a measuring instrument for the degree of polarization of light radiation which comprises three measuring channels for measuring the intensity of linearly polarized radiation. Each channel is built with the use of three operational amplifiers. The main errors of a measuring channel that can be described and determined are the errors of the operational amplifiers associated with the bias voltages and temperature drift. In real measuring systems there are much larger of such components. However, the use of computer equipment for modeling systems and processes, as well as measurements, removes all restrictions on the possibilities of processing the obtained data in a software way. With the help of computer technology it is possible to reduce the influence of perturbing effects and systematic errors, and also to eliminate gross errors. The random component of an error can be reduced by increasing the number of measurements and carrying out statistical data processing.   


2021 ◽  
Vol 31 (1) ◽  
pp. 127-142
Author(s):  
Vyacheslav F. Fedorenko ◽  
Vitaly E. Tarkivskiy ◽  
Nikolay P. Mishurov ◽  
Nikolay V. Trubitsyn

Introduction. When carrying out an energy assessment of agricultural machines and traction tests of tractors, the most important indicator is the value of the tractive effort. The existing methods for determining the tractive effort of tractors imply the use of specialized measuring instruments, such as strain gauges and devices for processing and displaying information. The accuracy of determining the tractive effort is significantly influenced by the physical and mechanical properties of soil. To process the useful signal during the measurement of tractive effort, the data stream of the strain gauge sensor must be subjected to additional digital filtering taking into account the operating conditions of the agricultural unit. Materials and Methods. The functions of changing the tractive effort obtained on the K-744R2 tractor in various gears have been analyzed. An algorithm for digital processing of the signal of a strain gauge force meter based on a median filter has been developed that makes it possible to increase the measurement accuracy. The advantage of the proposed method is the ability to cut off sharp short-term impulse noise and sharp fluctuations in the amplitude of the measured value. Results. A method for determining the amount of tractive effort using median signal processing has been proposed. A device for determining the tractive effort during testing of agricultural tractors and units has been developed. The choice of the main components of the device for determining the magnitude of the tractive effort has been substantiated. As a result of the research, a device for measuring and digital processing of the signal of a force meter based on a microcontroller and specialized software for processing initial data in real time was designed and manufactured. Discussion and Conclusion. The developed method makes it possible to exclude the negative effect of impulse noise arising in the process of measuring the tractive effort of the tractor. The proposed device for measuring the tractive effort of tractors is compatible at the level of the exchange protocol with existing devices, has a high speed of operation in real time, multi-channel operation.


TRANSIENT ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 1002
Author(s):  
Chyntia Dewi Candra Pravitasari ◽  
Abdul Syakur ◽  
Budi Setiyono

Measurement of high voltage AC, DC and Impulses on a laboratory scale using expensive measuring instruments. In addition, the measurements taken are at a voltage level of 15 KV. Integrated measurement of high voltage AC, DC and Impulses for 15 KV voltage levels using sign transformers has never been done. Whereas high voltage generation using a sign transformer is only able to generate voltage up to 15 KV voltage only. For that we need a voltage measuring device that is able to measure up to a voltage of 15 KV, and does not require expensive costs. In this Final Project, a high voltage monitoring module for impulse high voltage generator module will be designed using visual studio c #. The results of monitoring the high voltage generator module on the C # visual studio form successfully went well. The voltage test performed produces a value close to the actual value with an average error of 0.01 volts. Unfortunately this test is still not perfect because it is still susceptible to noise so that the measurement process is often interrupted.


Sign in / Sign up

Export Citation Format

Share Document