scholarly journals Assessment of Soil Properties Under Different Land Use Types in Olokemeji Forest Reserves in Ogun State Southwestern Nigeria

2020 ◽  
Vol 7 (3) ◽  
pp. 73-84
Author(s):  
OLUWATOYIN OPEYEMI AKINTOLA ◽  
ADEWUNMI IDAYAT BODEDE ◽  
MICHAEL MICHAEL ◽  
AYODEJI GIDEON ADEBAYO ◽  
OLAWALE NUREAN SULAIMAN

Knowledge of soil properties is essential for environmental sustainability for any forest reserve or plantation. The physical and chemical properties of soil under three different land uses was investigated to assess the nutrient and fertility status of the soils. Fifteen soil samples, each collected from different locations within the natural forest, plantation and farm land were analyzed for soil texture, bulk density, porosity, pH, organic carbon, organic matter content, total nitrogen, available phosphorus, Na, K, Ca, Mg, Zn, Cu, Fe and Mn. Texturally, the soils were loamy, loamy sand and sandy loamy in the natural forest, plantation and farmland respectively. There was a significant difference between the three different soils in composition and texture.

2019 ◽  

<p>Application of municipal sewage sludge (MSS) to agricultural soils is a current practice in EU. European legislation permits its use in agriculture when concentrations of metals in soil do not exceed the maximum permissible limits. In order to study the influence of MSS on cotton yield and soil properties, a filed experiment was conducted in a soil classified as Typic Xerochrepts located in Lamia area, central Greece, for two consecutive years. The experimental design was complete randomized blocks with four treatments: Control (C ), inorganic fertilization (IF), application of 6000 dry kg ha-1 MSS, and 10000 dry SS kg ha-1, each replicated 4 times. The results showed that MSS application in both rates, increased significantly cotton yield compared to control equally to inorganic fertilization. Soil properties, at the end of the second year of MSS application, were significantly affected by MSS application in a positive way i.e. pH decreased slightly, but organic matter content, available phosphorus, total nitrogen concentrations exchangeable potassium and available zinc and copper increased significantly. The potentially toxic elements lead, chromium, and nickel were not significantly affected by MSS application in both application rates compared to control.</p>


Author(s):  
Baoyang Sun ◽  
Feipeng Ren ◽  
Wenfeng Ding ◽  
Guanhua Zhang ◽  
Jinquan Huang ◽  
...  

Freeze-thaw erosion occurs primarily at high latitudes and altitudes. Temperature controlled freeze-thaw events dislodge soil particles and serve as a catalyst for erosion. This review paper provided an overview of the effects of freeze-thaw on soil properties and water erosion. The process of freeze-thaw cycles results in temporary and inconsistent changes in the soil moisture, and affects the soil’s mechanical, physical and chemical properties, such as the soil moisture content, porosity, bulk density, aggregates stability, shear strength and organic matter content and so on. The variation trend and range of the soil properties were related to the soil texture, water content and freeze-thaw degree. Furthermore, the soil erosion was affected by the freeze-thaw processes, as thawing and water erosion reinforce each other. However, research of different experimental conditions on indoor simulations have numerous limitations compared with field experiments. The use of indoor and field experiments to further reveal the freeze-thaw effect on the soil erosion would facilitate improved forecasting.


Jurnal Solum ◽  
2010 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Asmar Asmar ◽  
Amrizal Saidi ◽  
Masliyunas Masliyunas

A research about relationship between soil properties and crop yield was conducted in Pandai Sikek, Tanah Datar Region, center for cabbage and carrot production, West Sumatra in 2004 and 2005.  Soil samples were collected from rainfed paddy soils by purposive random sampling.  Soil samples were analyzed in Soil Laboratory, Agriculture Faculty and Agriculture Polytechnique Laboratory, Andalas University.  Several soil physical properties analysed were soil bulk density and total soil pores by using gravimetric method, permeability with de Boodt method, soil water content at several pF values using pressure plate apparatus, and soil strength by using penetrometer.   Soil chemical parameters analysed were soil pH using pH-meter, organic-C using Walkley and Black, available P using Bray II, and cation exchange capacity using NH4-leaching at pH 7.0, and N-total using Kjehdhal method.  Crop productions were sampled from a 3x3 m2 of soil sampling area.  The result showed that soils planted by cabbage and carrot had good soil physical properties, such as having balanced pore size distribution.  The chemical properties of the soils were good as well, except N, K- and Ca-exchangeable which were very low.  The other soil properties were quite good.  Soil physical properties gave different response on both crops.  Carrots were more response aeration pore and soil organic matter content, then cabbage was more response on BV, TSP, and slow drainage pores.  While soil chemical properties did not give significant response.  Both crops responded on Ca, but cabbage was more response on N-total, and carrot on CEC and saturated cationKey Words: Soil Physical Properties, Soil Fertility, Crop Productivity


2020 ◽  
Author(s):  
Fentanesh Haile Buruso ◽  
Zenebe Admasu Teferi

Abstract BackgroundThe decrease in the area under natural vegetation and its conversion into other types of use has resulted in resource degradation including soil quality loss. Soil properties response to changes in land use/ cover has shown spatial and temporal variations. Hence this study was carried out to examine the influence of land use/ cover changes on physical and chemical properties of the soils in Rib watershed. Soil samples were taken over three selected land use/ covers (natural forest, grazing and cultivated lands) in two agro- ecological zones (Dega and High Dega). Multivariate analysis of variance (MNOVA) and Pearson’s correlation was computed. ResultsThe study revealed that land use/ cover and altitude have influenced physical and chemical properties of the soil in the study watershed. Significant difference in distribution of soil texture, BD, OC, TN and pH among land use/ covers have been observed. Natural forest had higher OC, OC stock and TN than grazing and cultivated lands. The mean OC stock ranged from 188.32 t/ha in natural forest to 72.75t/ha in cultivated lands. Soil pH was slightly higher for natural forests and lower in the soils of grazing and cultivated lands. Significant difference (P<0.05) among the two agro ecologies were also observed in OC, Ca2+, clay, and silt.. ConclusionTherefore, land use/ cover changes have affected the concentration of TN, OC, increase soil acidity and compaction that can affect productive of soils and production of crops.


2020 ◽  
Vol 3 (2) ◽  
pp. 353-365
Author(s):  
Babita Neupane ◽  
Krishna Aryal ◽  
Lal Bahadur Chhetri ◽  
Shishir Regmi

This experiment was conducted in the farmer’s field at Khajrauta, Gadhawa-4, Dang, Nepal to evaluate the effect of integrated nutrient management on growth and yield of cauliflower as well as their residual effects on soil properties. The cauliflower variety silvercup-60 was grown under eight different treatments; T1: 50% N through RDF + 50% N through FYM; T2: 50% N through RDF + 50% N through PM; T3: 50% N through RDF + 50% N through VC, T4: 50% N through RDF + 25% N through FYM + 25% N through PM; T5: 50% N through RDF + 25% N through VC + 25% N through PM; T6: 50% N through RDF + 25% N through VC + 25% N through FYM; T7: 50% N through RDF + 25% N through  VC +25% N through FYM; T8: 50% N through RDF + 50% N  through FYM,VC and poultry manure. The experiment was laid out in RCB design with three replications. The result revealed that the  highest plant height (36.40 cm), number of leaves (15), plant spread (31.72 cm), leaf area (526.5 cm2), curd weight (207.3g) and curd yield (12.85 t/ha) were found under 50% N through RDF +50% N through VC. The root length, root diameter and root density were better under all INM treatments as compared to 100% N through RDF. INM treatments showed lesser bulk density, lesser particle density, greater infiltration rate and greater organic matter content than application of 100% N through RDF. Soil total nitrogen was increased in all INM treatments while soil available phosphorus decreases in all treatments except 100% N trough RDF and 50% N through RDF +50% N through PM. Thus, farmers are suggested to apply 50% N through VC along with 50% N through RDF to increase cauliflower yield.   


Soil Research ◽  
1987 ◽  
Vol 25 (1) ◽  
pp. 95 ◽  
Author(s):  
M Amato ◽  
JN Ladd ◽  
A Ellington ◽  
G Ford ◽  
JE Mahoney ◽  
...  

14C- and 15N-labelled wheat straw, and tops or roots of a pasture legume (either Medicago littoralis or Trifolium subterraneum) were incorporated into topsoils at 12 field sites in southern Australia. These sites were representative of soil types widely used for wheat growing in each region. The soils varied markedly in their physical and chemical properties (e.g. pH, texture and organic matter content). Based on amounts of residual I4C (averaged for all sites), the legume tops decomposed more extensively than did wheat straw, especially soon after incorporation. To a lesser extent the legume tops decomposed more extensively than legume roots, and T. subterraneum tops more than M. littoralis tops; root decomposition for both legumes was similar. For example, after 1 year, the residual organic 14C from wheat straw, M. littoralis tops, T. subterraneum tops and legume roots accounted for 48%, 41%, 38% and 54% of their respective inputs. After two years, residual 14C of wheat straw accounted for 30% of the input. Differences in decomposition due to climate and soil properties were generally small, but at times were statistically significant; these differences related positively with rainfall and negatively with soil clay content, but showed no relationship with pH or soil organic C and N. Some N was mineralized from all plant materials, the greatest from legume tops, the least from wheat straw. After 1 year, residual organic 15N accounted for 56%, 63% and 78% respectively of input l5N from legume tops and roots and from wheat straw. The influence of climate and soil properties on amounts of residual organic I5N was small and generally was consistent with those found for residual 14C. AS an exception, the residual organic 15N from wheat straw was negatively related to soil organic N levels, whereas residual I5N of legume tops and roots and residual 14C of all plant materials were not influenced by soil organic matter levels. These results are discussed in terms of the turnover of N in soils amended with isotope labelled plant materials of different available C:N ratios.


Author(s):  
Parashuram Chandravamshi ◽  
T. V. Jyothi ◽  
A. H. Kumar Naik ◽  
D. A. Sumana

Aim: To study the effect of tube well irrigation water on soil physico-chemical properties and available nutrients status of central dry zone of Karnataka, Hiriyur taluk, Chitradurga district. Place and Duration of Study: Aimangala, Hiriyur, Dharmapura and Javagondanahally hoblis of Hiriyur taluk, Chitradurga district from January, 2019 to September, 2019. Methodology:  Ninety-six soil samples using GPS from 0 - 22.5 cm depth were collected randomly representing Aimangala, Hiriyur, Dharmapura and Javagondanahally hoblis of Hiriyur taluk, Chitradurga district. The soil samples were analyzed in the laboratory for various physico-chemical parameters (pH and EC), organic carbon and available major (N, P2O5 and K2O) and micronutrients (Fe, Zn, Mn and Cu) status. Results and Conclusion:  The results revealed that the villages studied in different hoblis were saline to sodic in soil reaction, non-saline to saline, low to high in organic matter content, low to high in available nitrogen, low to high in available phosphorus and low to high in available potassium status and sufficiency in micronutrients viz., Cu, Fe and Mn and deficient in Zn in some of the villages.


Author(s):  
K. A. Abdulraheem

The effects of fire on soil properties have been widely studied in different ecosystems globally. However, only limited studies exist in the savanna tropics of Africa with mostly inconsistent results. The objective of this study is to characterize the effects of different fire intensities on soil properties in the Guinea Savannah of Nigeria through laboratory experiments. Three different grass species (Eleusine indica, Cynodon dactylon and Imperata cylindrica) and soils were collected from the forest zone of the University of Ilorin and prepared for laboratory investigation. Experimental fires were simulated in the laboratory to replicate field burning conditions on the prepared plots to determine precise effects of fire on soil properties. Three fire treatments (low, moderate and high) were considered, while the pre-burning and post burning samples of soils were taken for laboratory investigation, and the results statistically analyzed. The pH was observed to have increased between the range of 7.92 to 8.37. The average percentage decrease in organic matter content is 5%, 33% and 69% for low, moderate and high fire intensities, respectively. For total nitrogen, 8%, 16%, and 19% increase; calcium, 17%, 117% and 283% increase; magnesium, 11%, 30% and 84% increase; sodium, 7%, 20% and 54% increase; potassium, 24%, 20% and 49% decrease; available phosphorus, 8%, 18% and 29% increase. The results show the impacts of prescribed fire in the management of savanna ecosystem..


2020 ◽  
Vol 8 (1) ◽  
pp. 293-300
Author(s):  
Adinda Ardana Reswari ◽  
Sugeng Prijono

Climate change in coffee cultivation is very influential and can disrupt the hydrological cycle, so shade planting is required. Planting vegetation on coffee fields can affect the infiltration rate. The infiltration rate is the amount of water per unit time that enters the soil surface. The purpose of this study was to determine the infiltration rate with various shading, namely mixed shade (sengon, teak, pepper, and coconut), sengon shade, and monoculture coffee land and to determine the relationship between soil physical properties and infiltration rate on people's land. The measurement of the infiltration rate was done with a double ring infiltrometer and the Horton model. Infiltration rate can be influenced by a variety of soil properties such as bulk density, soil pore distribution, soil aggregate stability, soil texture, soil organic matter content, and land use. The analysis used correlation, linear regression, multiple linear regression, and t-test. Differences in shade and soil properties affect the infiltration rate, especially micropores and soil porosity. Soil with a lot of micro-pore soil, low porosity and clay texture has a slow infiltration rate. The results of the t-test between the actual infiltration rate and the infiltration rate of the Horton model showed no significant difference; therefore, the Horton method approach can be used in estimating the actual infiltration rate in coffee fields.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Luiza Usevičiūtė ◽  
Edita Baltrėnaitė-Gedienė ◽  
Dalia Feizienė

This study examined the effect of study time, biochar dose, and fertilization-tillage system on the improvement of sandy loam physical-chemical properties and triticale grain yield. The soil properties (water holding capacity (WHC), wettability, moisture content (MC), organic matter content (SOM), pH, and electrical conductivity (EC) were monitored in short time intervals (after 3, 6, 12, and 24 months). Soil was tilled in two methods (shallow ploughless tillage and direct drilling), fertilized with nitrogen, phosphorus, and potassium (NPK) fertilizers, and amended with three hydrophobic pine wood biochar doses (0 t/ha; 5 t/ha; 15 t/ha). It was found that 15 t/ha biochar dose had the highest effect on the soil’s physical-chemical properties improvement (SOM increased by 33.7%, pH—by 6.84%, EC—by 23.4%, WHC—by 8.48%, and MC—by 21.8%) compared to the variants without biochar. Direct drilling, fertilization with NPK fertilizers and 15 t/ha biochar dose significantly influenced the rise of soil’s physical-chemical properties and triticale yield (3.51 t/ha).


Sign in / Sign up

Export Citation Format

Share Document