Coordinated Rice Improvement Project in India: Its Significant Achievements and Future prospects

2019 ◽  
Vol 56 (Special) ◽  
pp. 82-91 ◽  
Author(s):  
LV Subba Rao ◽  
RA Fiyaz ◽  
AK Jukanti ◽  
G Padmavathi ◽  
J Badri ◽  
...  

India is the second largest producer of rice in the world and it is the most important staple food grain. All India Coordinated Rice Improvement Project (AICRIP) was initiated with objective of conducting multi-location trials to identify suitable genotypes of high yield potential along with appropriate crop management practices. Since its inception AICRIP contributed significantly in meeting the growing demand both within and outside India. Significant progress has been achieved through AICRIP in terms of varietal release thereby increasing the crop productivity and also meeting the food and nutritional security. This paper makes a sincere effort in bringing out the significant achievements/milestones achieved under the AICRIP program and also gives a few directions for widening the areas under AICRIP.

2019 ◽  
Vol 56 (Special Issue) ◽  
pp. 82-91
Author(s):  
LV Subba Rao ◽  
RA Fiyaz ◽  
AK Jukanti ◽  
G Padmavathi ◽  
J Badri ◽  
...  

India is the second largest producer of rice in the world and it is the most important staple food grain. All India Coordinated Rice Improvement Project (AICRIP) was initiated with objective of conducting multi-location trials to identify suitable genotypes of high yield potential along with appropriate crop management practices. Since its inception AICRIP contributed significantly in meeting the growing demand both within and outside India. Significant progress has been achieved through AICRIP in terms of varietal release thereby increasing the crop productivity and also meeting the food and nutritional security. This paper makes a sincere effort in bringing out the significant achievements/milestones achieved under the AICRIP program and also gives a few directions for widening the areas under AICRIP.


2019 ◽  
Vol 56 (Special Issue) ◽  
pp. 82-91
Author(s):  
LV Subba Rao ◽  
RA Fiyaz ◽  
AK Jukanti ◽  
G Padmavathi ◽  
J Badri ◽  
...  

India is the second largest producer of rice in the world and it is the most important staple food grain. All India Coordinated Rice Improvement Project (AICRIP) was initiated with objective of conducting multi-location trials to identify suitable genotypes of high yield potential along with appropriate crop management practices. Since its inception AICRIP contributed significantly in meeting the growing demand both within and outside India. Significant progress has been achieved through AICRIP in terms of varietal release thereby increasing the crop productivity and also meeting the food and nutritional security. This paper makes a sincere effort in bringing out the significant achievements/milestones achieved under the AICRIP program and also gives a few directions for widening the areas under AICRIP.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Cailong Xu ◽  
Ruidong Li ◽  
Wenwen Song ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Increasing planting density is one of the key management practices to enhance soybean yield. A 2-yr field experiment was conducted in 2018 and 2019 including six planting densities and two soybean cultivars to determine the effects of planting density on branch number and yield, and analyze the contribution of branches to yield. The yield of ZZXA12938 was 4389 kg ha−1, which was significantly higher than that of ZH13 (+22.4%). In combination with planting year and cultivar, the soybean yield increased significantly by 16.2%, 31.4%, 41.4%, and 46.7% for every increase in density of 45,000 plants ha−1. Yield will not increase when planting density exceeds 315,000 plants ha−1. A correlation analysis showed that pod number per plant increased with the increased branch number, while pod number per unit area decreased; thus, soybean yield decreased. With the increase of branch number, the branch contribution to yield increased first, and then plateaued. ZH13 could produce a high yield under a lower planting density due to more branches, while ZZXA12938 had a higher yield potential under a higher planting density due to the smaller branch number and higher tolerance to close planting. Therefore, seed yield can be increased by selecting cultivars with a little branching capacity under moderately close planting.


2016 ◽  
Vol 155 (2) ◽  
pp. 239-260 ◽  
Author(s):  
Q. JING ◽  
J. SHANG ◽  
T. HUFFMAN ◽  
B. QIAN ◽  
E. PATTEY ◽  
...  

SUMMARYMaize in Canada is grown mainly in the south-eastern part of the country. No comprehensive studies on Canadian maize yield levels have been done so far to analyse the barriers of obtaining optimal yields associated with cultivar, environmental stress and agronomic management practices. The objective of the current study was to use a modelling approach to analyse the gaps between actual and potential (determined by cultivar, solar radiation and temperature without any other stresses) maize yields in Eastern Canada. The CSM–CERES–Maize model in DSSAT v4·6 was calibrated and evaluated with measured data of seven cultivars under different nitrogen (N) rates across four sites. The model was then used to simulate grain yield levels defined as: yield potential (YP), water-limited (YW, rainfed), and water- and N-limited yields with N rates 80 kg/ha (YW, N-80N) and 160 kg/ha (YW, N-160N). The options were assessed to further increase grain yield by analysing the yield gaps related to water and N deficiencies. The CSM–CERES–Maize model simulated the grain yields in the experiments well with normalized root-mean-squared errors <0·20. The model was able to capture yield variations associated with varying N rates, cultivar, soil type and inter-annual climate variability. The seven calibrated cultivars used in the experiments were divided into three grades according to their simulated YP: low, medium and high. The simulation results for the 30-year period from 1981 to 2010 showed that the average YPwas 15 000 kg/ha for cultivars with high yield potential. The YPis generally about 6000 kg/ha greater than the actual yield (YA) at each experimental site in Eastern Canada. Two-thirds of this gap between YPand YAis probably associated with water stress, as a gap of approximately 4000 kg/ha between the YWand the YPwas simulated. This gap may be reduced through crop management, such as introducing irrigation to improve the distribution of available water during the growing season. The simulated yields indicated a gap of about 3000 and 1000 kg/ha between YWand YW,N-80N for cultivars with high YPand low YP, respectively. The gap between YWand YW,N-160N decreased to <2000 kg/ha for high Ypcultivars with little difference for the low Ypcultivars. The different yield gaps among cultivars suggest that cultivars with high YPrequire high N rates but cultivars with low YPmay need only low N rates.


2015 ◽  
Vol 66 (8) ◽  
pp. 782 ◽  
Author(s):  
Andrew Milgate ◽  
Ben Ovenden ◽  
Dante Adorada ◽  
Chris Lisle ◽  
John Lacy ◽  
...  

Research into winter cereal breeding in Australia has focused primarily on studying the effects of rainfed environments. These studies typically show large genotype × environment (GE) interactions, and the complexity of these interactions acts as an impediment to the efficient selection of improved varieties. Wheat has been studied extensively; however, there are no published studies on the GE interactions of triticale in Australia under irrigated production systems. We conducted trials on 101 triticale genotypes at two locations over 4 years under intensive irrigated management practices and measured the yield potential, GE interactions, heritability and estimated genetic gain of yield, lodging resistance and several other traits important for breeding triticale. We found that high yield potential exceeding 10 t ha–1 exists in the Australian germplasm tested and that, in these irrigated trials, genotype accounted for a high proportion of the variability in all measured traits. All genetic parameters such as heritability and estimated genetic gain were high compared with rainfed studies. Breeding of triticale with improved yield and lodging resistance for irrigated environments is achievable and can be pursued with confidence in breeding programs.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243580
Author(s):  
Guiyuan Meng ◽  
Rongqian Zheng ◽  
Haiping Chen ◽  
Guohui Ma ◽  
Zhongwei Wei ◽  
...  

Continued drought during the late growth stage of super hybrid rice (SHR) markedly reduces yield, and management practices that use water more efficiently can contribute greatly to high and stable yields from SHR. The absolute temperature differences (ATDs) between the rice plant and the atmosphere and between the soil and the atmosphere are believed to be important determinants of grain yield. However, it has not previously been determined whether these ATDs have any effect on SHR yields under water-saving cultivation. A two-year field experiment involving two SHR varieties, Liangyoupeijiu (LYPJ) and Y-Liangyou 9000 (YLY900), evaluated the effects of reducing water supply from mid-booting to maturity on grain yield, canopy relative humidity (CRH), leaf area index (LAI), and ATDs between the ambient temperature and the leaf surface, panicles, canopy, and soil. Grain yield increased significantly under shallow water irrigation (SW), by 8.84% (YLY900) and 12.26% (LYPJ), but decreased significantly under mild water stress (MS, −20 to −30 kPa), by 14.36% (YLY900) and 9.47% (LYPJ), as well as severe water stress (SS, −40 to −50 kPa), by 35.06% (YLY900) and 28.74% (LYPJ). As water supply decreased, so did the CRH and the ATDs, with significant decreases under MS and SS. The temperature differences were significantly and positively correlated with grain yield (P < 0.01) in both cultivars. LAI was increased under SW conditions, but was significantly decreased under MS and SS. Our study suggests that the dual goal of saving water while maintaining high yield can be achieved by applying SW irrigation from mid-booting to maturity and by adopting cultivation measures that maintain high CRH and high plant–atmosphere and soil–atmosphere ATDs in order to alleviate water stress. YLY900 has a higher yield potential than LYPJ under SW conditions, suggesting that its wide cultivation may help achieve this dual goal.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ulrika Carlson-Nilsson ◽  
Karolina Aloisi ◽  
Ingunn M. Vågen ◽  
Ari Rajala ◽  
Jørgen B. Mølmann ◽  
...  

In the Arctic part of the Nordic region, cultivated crops need to specifically adapt to adverse and extreme climate conditions, such as low temperatures, long days, and a short growing season. Under the projected climate change scenarios, higher temperatures and an earlier spring thaw will gradually allow the cultivation of plants that could not be previously cultivated there. For millennia, Pea (Pisum sativum L.) has been a major cultivated protein plant in Nordic countries but is currently limited to the southern parts of the region. However, response and adaptation to the Arctic day length/light spectrum and temperatures are essential for the productivity of the pea germplasm and need to be better understood. This study investigated these factors and identified suitable pea genetic resources for future cultivation and breeding in the Arctic region. Fifty gene bank accessions of peas with a Nordic landrace or cultivar origin were evaluated in 2-year field trials at four Nordic locations in Denmark, Finland, Sweden, and Norway (55° to 69° N). The contrasting environmental conditions of the trial sites revealed differences in expression of phenological, morphological, crop productivity, and quality traits in the accessions. The data showed that light conditions related to a very long photoperiod partly compensated for the lack of accumulated temperature in the far north. A critical factor for cultivation in the Arctic is the use of cultivars with rapid flowering and maturation times combined with early sowing. At the most extreme site (69°N), no accession reached full maturation. Nonetheless several accessions, predominantly landraces of a northern origin, reached a green harvest state. All the cultivars reached full maturation at the sub-Arctic latitude in northern Sweden (63°N) when plants were established early in the season. Seed yield correlated positively with seed number and aboveground biomass, but negatively with flowering time. A high yield potential and protein concentration of dry seed were found in many garden types of pea, confirming their breeding potential for yield. Overall, the results indicated that pea genetic resources are available for breeding or immediate cultivation, thus aiding in the northward expansion of pea cultivation. Predicted climate changes would support this expansion.


Author(s):  
Madaka Madhan Mohan ◽  
S. Ramalakshmi Devi ◽  
D. V. Srinivasulu ◽  
A. Veeraiah

Cluster FLDs were organized by Krishi Vigyan Kendra, Utukur in rabi bengalgram during three consecutive years of 2013-14, 2014-15 and 2015-16 under rainfed vertisols farming situation in an area of 52 ha. at 94 locations. At every demonstration site improved management practices viz. improved variety with high yield potential and drought tolerance (Nandyal sanaga-1), Compartmental bunding (8 m x 5m), Soil test based integrated balanced nutrition: sulphur granules @ 10 kg ha-1, zinc sulphate @ 20 kg ha-1 as basal, biofertilizers like rhizobium, PSB and KSB @ 5 kg ha-1 by incubating in 100 kg of farm yard manure under shade for 15 days, Seed treatment of Trichoderma viride @ 5g kg-1of seed 7. Integrated Pest Management strategies like erection of pheromone traps 20 no. per ha., spraying of NSKE@ 0.5%, bird perches @ 30 no. Per ha and spraying need based pesticides for management of gram pod borer were demonstrated against existing farmers practice of bengalgram cultivation. The bengalgram yields under demonstration practice higher than farmers practice in all the three years. The per cent increase in yield over farmers practice is lowest (5.8 per cent) during 2013-14 and highest (20.9 per cent) during 2015-16 with an average increase of 15 per cent observed in demonstration practice. The average gross returns of three years is Rs. 51533/- per hectare in demo practice, which is 15.5 per cent higher than the farmer’s practice (Rs.44626 per ha). The net returns of Rs.19173/- per ha was recorded under demonstration practice and it was 259 per cent higher than the farmer’s practice (Rs.7393/- per ha). The mean benefit cost ratio of three years of demonstration package higher (1.58) than farmers practice (1.20).


Sign in / Sign up

Export Citation Format

Share Document