scholarly journals SELECTION OF THE CONSTRICTION FACTOR FOR VENUS FLYTRAP OPTIMIZATION

2021 ◽  
Vol 56 (5) ◽  
pp. 595-600
Author(s):  
Amany A. Naim ◽  
Neveen I. Ghali

This paper proposes venus flytrap optimization (VFO) with constriction factor (VFO-CF) for improving the convergence of the algorithm. The constriction factor has a significant impact on the performance of VFO-CF; its impact was inspected based on benchmark functions. Herein, the property of the constriction factor and the guidelines for determining the optimal parameter values are defined. The proposed method is tested on benchmark functions, and the obtained results are compared with existing VFO results. The water supply rate is tested in the range [4.1, 4.2], which is generally reasonable for the benchmark functions.

2012 ◽  
Vol 29 (03) ◽  
pp. 1240022 ◽  
Author(s):  
BERMAWI P. ISKANDAR ◽  
NAT JACK ◽  
D. N. PRA MURTHY

For a repairable product that fails under warranty, the manufacturer can choose between repair and replacement. Many different warranty servicing strategies involving these two types of rectification action have already been studied. In this paper, we propose two new servicing strategies involving minimal repair, each with two parameters that are selected optimally to minimize expected warranty servicing costs. We develop models to obtain the optimal parameter values for each new strategy and then carry out a comparison with a selection of the existing strategies through a numerical example.


Author(s):  
GUO-YOU SHI ◽  
SHUANG LIU

Since generalization performance of support vector machines depends a lot on parameter values of kernel functions, it is important to select optimal parameter values. How to finish optimal model selection of C-Support Vector Machines (C-SVM) with satisfiable speed is the main focus of this paper. We can hardly finish training process for large data sets with traditional methods because of long time-consuming cost. To take advantage of multi-threading and genetic algorithms, we studied a hybrid model selection method to select C and sigma of RBF kernel function for C-SVM classifier. This new method not only chooses global optimal parameters, but also saves training time based on parallel computing process. Experimental results show the efficiency and feasibility of the new method.


2020 ◽  
pp. 9-13
Author(s):  
A. V. Lapko ◽  
V. A. Lapko

An original technique has been justified for the fast bandwidths selection of kernel functions in a nonparametric estimate of the multidimensional probability density of the Rosenblatt–Parzen type. The proposed method makes it possible to significantly increase the computational efficiency of the optimization procedure for kernel probability density estimates in the conditions of large-volume statistical data in comparison with traditional approaches. The basis of the proposed approach is the analysis of the optimal parameter formula for the bandwidths of a multidimensional kernel probability density estimate. Dependencies between the nonlinear functional on the probability density and its derivatives up to the second order inclusive of the antikurtosis coefficients of random variables are found. The bandwidths for each random variable are represented as the product of an undefined parameter and their mean square deviation. The influence of the error in restoring the established functional dependencies on the approximation properties of the kernel probability density estimation is determined. The obtained results are implemented as a method of synthesis and analysis of a fast bandwidths selection of the kernel estimation of the two-dimensional probability density of independent random variables. This method uses data on the quantitative characteristics of a family of lognormal distribution laws.


2021 ◽  
Vol 11 (15) ◽  
pp. 6955
Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

This study investigates the use of the differential transform method (DTM) for integrating the Rössler system of the fractional order. Preliminary studies of the integer-order Rössler system, with reference to other well-established integration methods, made it possible to assess the quality of the method and to determine optimal parameter values that should be used when integrating a system with different dynamic characteristics. Bifurcation diagrams obtained for the Rössler fractional system show that, compared to the RK4 scheme-based integration, the DTM results are more resistant to changes in the fractionality of the system.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ryan B. Patterson-Cross ◽  
Ariel J. Levine ◽  
Vilas Menon

Abstract Background Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems. Results Here, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple “robustness score” for each of these clusters, facilitating the assessment of cluster quality. Conclusion chooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.


2014 ◽  
Author(s):  
Kolea Zimmerman ◽  
Daniel Levitis ◽  
Ethan Addicott ◽  
Anne Pringle

We present a novel algorithm for the design of crossing experiments. The algorithm identifies a set of individuals (a ?crossing-set?) from a larger pool of potential crossing-sets by maximizing the diversity of traits of interest, for example, maximizing the range of genetic and geographic distances between individuals included in the crossing-set. To calculate diversity, we use the mean nearest neighbor distance of crosses plotted in trait space. We implement our algorithm on a real dataset ofNeurospora crassastrains, using the genetic and geographic distances between potential crosses as a two-dimensional trait space. In simulated mating experiments, crossing-sets selected by our algorithm provide better estimates of underlying parameter values than randomly chosen crossing-sets.


Author(s):  
Stanislav Chicherin

Introduction. Renovation of housing stock supposes construction of new buildings, where the main utilities consuming heat energy will be heating and hot water supply (HWS) systems. Under such conditions the task of heat consumption reduction by transfer to low-temperature and use of the associated procedures is relevant. Materials and Methods. Research was performed on the basis of residential and administration buildings designed within the whole Russia, the facilities were selected based on the year of putting into operation and their purpose. The source of data concerning buildings became documents included into the scope of the design and detailed documentation: plans, drawings and explanatory notes. As meeting the demands of hot water supply makes the main contribution to daily nonuniformities of heat energy consumption, the attention was paid to equipment of hot water supply systems. For calculations, the commercial product of Microsoft Office Excel 2010 was used. Results. During selection of roof boiler house as a source of heat supply increase in consumption of equivalent fuel in relation to the variant of connection to heat power plant operating on solid fuel by 187,314 tons of fuel oil equivalent is possible. General refusal from power-and-heat generation complicates operation of large district heat supply systems. The design parameters of coolant in building heating system differ from project to project: from 95/70 °С, used everywhere till the beginning of the XXI century, up to 90/65 °С corresponding to existing practice of designing or 80/60 °С as at the facility in Sevastopol. Reduction of design temperatures by 5 % is insufficient to decrease general heat consumption of the building. Reduction of heat consumption is explained by selection of advanced materials for pipeline heat insulation. Use of automation diagrams for heat points on the basis of regulator ECL Comfort 310 contributes to improvement of hydraulic control for heating systems, however, concealed automation results in violation of high-quality mode for heat network control and decrease of coolant parameters on adjacent (often non-automated) consumers. Conclusions. Supplement of central high-quality control by local constant temperature/variable flow control at individual heat unit and installation of temperature controllers on heating radiators with mechanical thermostatic head have potential for reduction of the heat energy volume used ineffectively. Increase in level of controllability for heating system together with cheaper and responsive automation systems are basic conditions for increase in quality of heat supply in future.


Sign in / Sign up

Export Citation Format

Share Document