scholarly journals The Analysis of wind action on building and scaffolding system

2013 ◽  
Vol 12 (2) ◽  
pp. 111-118
Author(s):  
Paulina Jamińska

In the present study an attempt to evaluate the effect of wind action on the building - scaffolding system was made. Analysis was based on the CFD simulations using ANSYS FLUENT and RNG k-ε turbulence model. Calculations were performed for 2D case of building of rectangular cross-section. Turbulent wind flow was modelled around the building and the building with a scaffolding set along longer wall. Four different angles of wind attack: 0 °, 45 °, 90 ° and 135 ° were taken into account. The results are shown in the form of pressure distribution on the walls of model and the velocity distribution in the computational domain, and later compared to the standard recommendations for scaffoldings. The analysis indicated that the actual flow around a building with scaffolding is much more complicated than the flow shown in standards. It can even lead to scaffold collapse due to the wind induced torque forces.

2015 ◽  
Vol 769 ◽  
pp. 161-165
Author(s):  
Vladimira Michalcova ◽  
Sergej Kuznetsov ◽  
Lenka Lausova ◽  
Iveta Skotnicova

The article describes the study of turbulent characteristics in the enclosed chamber of a rectangular corss-section nozzle using numerical calculations. Suitable Ansys Fluent software models were selected based on the measurements results comparison in an aerodynamic tunnel as the fluid exits the nozzle. Special attention is paid to profile velocity near the peripheral wall of the observed enclosed chamber in order to confirm the optimal shape of the contraction and thus take steps towards a high quality velocity field.


Author(s):  
Luis Costero Sánchez ◽  
Klaus Höschler ◽  
Sagar Sadananda Bhat

As the first time, 0D-1D-3D and fully 3D steady-state aero-thermo-fluid simulations of a structural oil-to-air Fan Outlet Guide Vane Cooler (FOGVC) in a jet engine are presented. Using the commercial softwares Ansys Fluent, the thermo-mechanical module of Ansys and the 1D fluid solver Flownex, 5 simulation types (3D fully conjugate heat transfer with and without a thin wall model, 3D with a thin wall model, 1D-3D coupled, 1D and 0D) corresponding to 4 levels of simplification in 3 possible domains (oil, oil-metal and oil-metal-air) have been compared to provide selection criteria when a determined level of accuracy in the simulations without prohibited computational times is desired. The methodologies are applied to two different oil internal cavities: an inverted U with rectangular cross section and a coil internal cavity with a circular cross section. The obtained results show that depending on the scope of the research (outlet oil temperature, dissipated heat rate or oil pressure drop) and the accuracy of the results, one method or the other may be used. Experimental data would be needed to validate the numerical results by all employed methodologies and geometries.


Author(s):  
Vladimíra Michalcová ◽  
Sergej Kuznětsov ◽  
Stanislav Pospíšil

Abstract The article describes air flow turbulent attributes in the enclosed chamber of a rectangular cross-section contraction for the purpose of confirming its optimal shape. The task is solved numerically using Ansys Fluent software. Right models were selected based on the evaluated results at a contraction's outlet which were compared to the physics experiment


2016 ◽  
Vol 837 ◽  
pp. 203-208 ◽  
Author(s):  
Olga Hubova ◽  
Lenka Konecna

The external wind pressure coefficients are based on the measurements on the structures without free-end flow near the top of vertical structures. The end-effect factor takes into account reduction of the pressures due to specific flow around the top of atypical building. The article is based on the experimental measurements in BLWT tunnel in Bratislava on the model of building with cross section of the quarter circle. The model was tested in two spaces - in steady and turbulent wind flow, by changing of wind direction and wind velocity. The end-effect factor depending on the wind direction is shown in the graphs.


2021 ◽  
Vol 49 (3) ◽  
pp. 704-710
Author(s):  
Basim Al-Bakri ◽  
Radwan Aljuhashy

In the present study, the influence of the wavy edge blade on aerodynamic characteristics for the flow of blades at Reynolds number (Re) of 8×105 is numerically investigated based on the unsteady wind flow. Aerodynamic characteristics of a (sinusoidal leading edge) wavy NACA0015 aerofoil blade are carried out using ICEM 19.1 and ANSYS fluent. The numerical simulation is conducted then validated by experimental data with steady wind flow. This is conducted by employing the same Reynold's number in the experimental work. While, the unsteady flow was numerically performed at 1 Hz frequency of wind flow conditions. The main findings from this work show that the wavy blade can behave better in turbulent wind conditions with the maximum lift coefficient of 0.73 compared to 0.621 for the normal blade. However, the findings declare that the wavy blade stalled earlier than the normal one in the unsteady flow case. Similarly, it stalled at 12° angle of attack earlier than the normal one which was stalled at 14° in the steady flow case.


Author(s):  
Biswash Shrestha ◽  
Nawraj Bhattarai

This study aims to achieve an improved airfoil performance at low Reynolds number, and to determine the optimum position and size of rectangular cross-section burst control plate (BCP) to suppress stall in airfoil. The type of airfoil used in the present study is NACA0015 (National Advisory Committee for Aeronautics) airfoil with 200 mm of chord (c) length. Here, rectangular cross-section burst control plates with different sizes and at different locations are investigated numerically at the low Reynolds number of 1.6×105. Total of three positions (0.05c, 0.1c and 0.2c from the leading edge of airfoil), and four sizes (with heights 0.3 mm, 0.7mm, 1mm and 1.5 mm, and constant width 4 mm) of rectangular BCPs are simulated in ANSYS Fluent software using Transition SST model. The results indicate that the rectangular cross-section burst control plate is an effective device in the suppression of airfoil stall. For 0.7 mm and 1 mm height BCPs, the stall angle is postponed by 2° for all positions, while for 0.3 mm and 1.5 mm height BCPs, the reduction in sudden fall of lift can be observed but at the cost of reduction in maximum lift coefficient. Among various configurations, the 1mm height BCP located at 0.2c position is found to be most effective in the suppression of stall.


2014 ◽  
Vol 617 ◽  
pp. 275-279 ◽  
Author(s):  
Vladimira Michalcova ◽  
Sergej Kuznetsov ◽  
Jiri Brozovsky ◽  
Stanislav Pospíšil

Flow characteristics contraction of rectangular cross-section are investigated numerically and experimentally so as to gain an additional insight into the contraction design. They observed velocity field and turbulent intensity in the area of contraction and downstream of it. Individual numerical models sofware Ansys Fluent are evaluated and compared with measurements in a wind tunnel.


Sign in / Sign up

Export Citation Format

Share Document