scholarly journals ABOUT THE DEVICES CONNECTING LEVEL WELLS OF FIXED CANAL AS «FIXED LINE» WITH TRAPEZOIDAL CANALS

Author(s):  
E.M. Mambetov ◽  
K.K. Beishekeev ◽  
I.R. Karypbaev

The article is devoted to a sensitive and poorly studied element of a “Fixed Line” as watermeasuring structure - a tube connecting level-gauge wells with watercourses in which water resources are counted. It is shown how these tubes are placed in the walls of the canals in their vertical planes and if they are incorrectly placed - how this can affect the accuracy of the measured water flow rates.

2021 ◽  
Vol 264 ◽  
pp. 03062
Author(s):  
Alisher Fatxulloyev ◽  
Jasurbek Hamroqulov ◽  
Aziza Gafarova

This article presents scientific research methods for assessing the average annual concentration of pollutants along the Pskem river. The analysis of existing calculation methods and assessed their errors are given. Extreme errors and errors in determining the average long-term concentration due to the lack of water content are analyzed. Recommendations to reduce possible errors due to neglect of water content in the absence of measured water flow rates are given.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Michal Brezina ◽  
Tomas Mauder ◽  
Lubomir Klimes ◽  
Josef Stetina

The paper presents the comparison of optimization-regulation algorithms applied to the secondary cooling zone in continuous steel casting where the semi-product withdraws most of its thermal energy. In steel production, requirements towards obtaining defect-free semi-products are increasing day-by-day and the products, which would satisfy requirements of the consumers a few decades ago, are now far below the minimum required quality. To fulfill the quality demands towards minimum occurrence of defects in secondary cooling as possible, some regulation in the casting process is needed. The main concept of this paper is to analyze and compare the most known metaheuristic optimization approaches applied to the continuous steel casting process. Heat transfer and solidification phenomena are solved by using a fast 2.5D slice numerical model. The objective function is set to minimize the surface temperature differences in secondary cooling zones between calculated and targeted surface temperatures by suitable water flow rates through cooling nozzles. Obtained optimization results are discussed and the most suitable algorithm for this type of optimization problem is identified. Temperature deviations and cooling water flow rates in the secondary cooling zone, together with convergence rate and operation times needed to reach the stop criterium for each optimization approach, are analyzed and compared to target casting conditions based on a required temperature distribution of the strand. The paper also contains a brief description of applied heuristic algorithms. Some of the algorithms exhibited faster convergence rate than others, but the optimal solution was reached in every optimization run by only one algorithm.


2020 ◽  
Vol 3 (3) ◽  
pp. 569
Author(s):  
Natanael Tadeus Sutanto ◽  
Wati Asriningsih Pranoto

Flood is one of the natural disasters that occur due to various factors and causes many losses. Tanjung Duren Selatan village was recorded as having floods in January 2020. This research aims to determine the causes of the flood in the area as well as the solution. The data obtained were taken from BMKG, West Jakarta City Water Resources Department, and direct measurements in the review area. This research analyzed rainfall, channel capacity, channel condition dan topography in Tanjung Duren Selatan village. Rainfall is tested for data compatibility using Chi-Square and Kolmogorov-Smirnov methods. Rainfall intensity is calculated using the Mononobe formula. The capacity of the existing channels is analyzed using Manning formula that will be compared with the planned discharge calculated using Rasional method. The analysis included secondary channels and tertiary channels, based on the calculation of 8 of the 48 channels reviewed that were unable to accommodate the planned discharge. After the analysis, it can be concluded that the flooding in Tanjung Duren Selatan village was caused by the lack of existing channel capacity, contours, and rubbish that blocked the water flow. Floods that occurred on January 1, 2020 due to rainfall that occurred exceeded the planned rainfall.ABSTRAKBanjir merupakan salah satu bencana alam yang terjadi akibat berbagai faktor dan menimbulkan banyak kerugian. Di Kelurahan Tanjung Duren Selatan tercatat mengalami banjir pada bulan Januari 2020. Penelitian ini bertujuan untuk mengetahui faktor penyebab terjadinya banjir pada daerah tersebut serta solusinya. Data-data yang didapat diambil dari BMKG, Suku Dinas Sumber Daya Air Kota Jakarta Barat, serta pengukuran langsung di daerah tinjauan. Pada penelitian ini dianalisis curah hujan, kapasitas saluran, kondisi saluran, serta topografi di Kelurahan Tanjung Duren Selatan. Curah hujan di uji kecocokan datanya menggunakan metode Chi-Square dan Kolmogorov-Smirnov. Intensitas curah hujan di hitung menggunakan rumus Mononobe. Kapasitas saluran eksisting di analisis menggunakan rumus Manning yang akan dibandingkan dengan debit rencana yang dihitung menggunakan metode Rasional. Analisis yang dilakukan mencakup saluran sekunder dan saluran tersier, berdasarkan perhitungan 8 dari 48 saluran yang ditinjau tidak mampu menampung debit rencana. Setelah analisis dilakukan dapat disimpulkan bahwa banjir di Kelurahan Tanjung Duren Selatan disebabkan oleh kurangnya kapasitas saluran eksisting, kontur, serta sampah yang menghalangi aliran air. Banjir yang terjadi pada tanggal 1 Januari 2020 dikarenakan curah hujan yang terjadi melebihi curah hujan rencana.


2020 ◽  
Author(s):  
Daniel Madrzykowski ◽  
◽  
Nick Down

This study was designed to be an initial step to investigate the potential of low flow nozzles as part of a retrofit flashover prevention system in residential homes with limited water supplies. Not all homes have water supplies that can meet the needs of a residential sprinkler system. Current alter- natives, such as including a supplemental tank and pump, increase the cost of the system. These homes could benefit from an effective fire safety system with lower water supply requirements. The experiments in this study were conducted in a steel test structure which consisted of a fire room attached to a hallway in an L-shaped configuration. Three types of experiments were conducted to evaluate nozzles at different flow rates and under different fire conditions. The performance of the nozzles was compared to the performance of a commercially available residential sprinkler. The first set of experiments measured the distribution of the water spray from each of the nozzles and the sprinkler. The water spray measurements were made without the presence of a fire. The other two sets of experiments were fire experiments. The first set of fire experiments were designed to measure the ability of a water spray to cool a hot gas layer generated by a gas burner fire. The fire source was a propane burner which provided a steady and repeatable flow of heat into the test structure. Two water spray locations were examined, in the fire room and in the middle of the hallway. In each position, the burner was shielded from the water spray. The results showed that for equivalent conditions, the nozzle provided greater gas cooling than the sprinkler. The tests were conducted with a fire size of approximately 110 kW, and water flow rates in the range of 11 lpm (3 gpm) and 19 lpm (5 gpm). The second set of fire experiments used an upholstered sofa as the initial source of the fire with the water spray located in the same room. As a result of the compartment size and water spray distribution, the nozzle flowing water at 23 lpm (6 gpm) provided more effective suppression of the fire than the sprinkler flowing 34 lpm (9 gpm) did. The nozzle was similarly effective with the ignition location moved 1.0 m (3.2 ft) further away. However, the nozzle failed to suppress the fire with a reduced water flow rate of 11 lpm (3 gpm). The results of this limited study demonstrate the potential of low flow nozzles, directly flowing water on to the fuel surface, with the goal of preventing flashover. Additional research is needed to examine larger room sizes, fully furnished rooms, and shielded fires to determine the feasibility of a reduced water flow flashover prevention system.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1200 ◽  
Author(s):  
Linlong Yu ◽  
Sobhan Iranmanesh ◽  
Ian Keir ◽  
Gopal Achari

Sulfolane is an emerging contaminant in the groundwater and soil nearby gas plants, which has attracted much attention from many researchers and regulatory agencies in the past ten years. In this paper, a field pilot-scale ultraviolet (UV)/hydrogen peroxide (H2O2) system was investigated for treating sulfolane contaminated groundwater. Different groundwater, as well as different operational parameters such as influent sulfolane concentration, H2O2 dosage, and water flow rates, were studied. The results showed that a pilot-scale UV/H2O2 system can successfully treat sulfolane contaminated groundwater in the field, although the presence of iron and other groundwater limited the process efficiency. The lowest electrical energy per order of reduction for treating sulfolane in groundwater by using the pilot-scale UV/H2O2 system was 1.4 kWh m−3 order−1. The investigated sulfolane initial concentrations and the water flow rates did not impact the sulfolane degradation. The enhancement of sulfolane degradation in an open reservoir by adding ozone was not observed in this study. Furthermore, an operational cost model was formulated to optimize the dosage of H2O2, and a stepwise procedure was developed to determine the power necessary of the UV unit.


Sign in / Sign up

Export Citation Format

Share Document