scholarly journals A STRATEGY FOR DETERMINING THE CHEMICAL COMPOSITION OF RICE STRAW

2020 ◽  
Vol 54 (9-10) ◽  
pp. 983-991
Author(s):  
MAHESHANI P. A. NANAYAKKARA ◽  
WALAGEDARA G.A. PABASARA ◽  
ADIKARI M.P.B. SAMARASEKARA ◽  
DON A.S. AMARASINGHE ◽  
LALEEN KARUNANAYAKE

As rice is the staple food of most Asian countries, rice straw has become one of the largest agricultural wastes in Asia. It has not been subjected to adequate value additions yet. However, it has excellent potential to be converted to valuable materials, as it contains a significant amount of cellulose. Therefore, it would be beneficial in many ways to identify the cellulose yields of straws of different rice varieties. In general, the cellulose content of biomass is determined by wet chemical methods. Though these methods are accurate, they are not convenient to use under industrial conditions. This research work focuses on investigating the potential of thermal analysis as an alternative way to predict cellulose yields. For the study, rice straws of most frequently cultivated traditional Sri Lankan rice varieties: Suwandel and Raththal, as well as technically modified Sri Lankan rice varieties: BG300 and BG352, were selected. The results obtained by the proposed method were validated by an established three-step chemical extraction process.

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Muhammad Syahmi Hamizol ◽  
Puteri Sri Melor Megat-Yusoff*

The focus of this paper is to obtain a continuous cellulose fiber (CCF) from mengkuang leaves of the pandanus genus using chemical extraction process and to measure its tensile properties. The higher the concentration of sodium hydroxide (NaOH) and the longer soaking times employed during the alkaline treatment of the mengkuang leaves, the higher the cellulose content extracted. The highest tensile strength of 520 MPa was measured for single CCF treated with optimum extraction parameters of 2% NaOH for 60 minutes. Amount of cellulose content of the extracted fiber showed an inverse relationship with the fiber’s tensile strength. The removal of lignin and hemicellulose content during extraction process may have caused the reduction in the fiber’s tensile strength.


Author(s):  
D. Zudhistira ◽  
V. Viswanathan ◽  
V. Narang ◽  
J.M. Chin ◽  
S. Sharang ◽  
...  

Abstract Deprocessing is an essential step in the physical failure analysis of ICs. Typically, this is accomplished by techniques such as wet chemical methods, RIE, and mechanical manual polishing. Manual polishing suffers from highly non-uniform delayering particularly for sub 20nm technologies due to aggressive back-end-of-line scaling and porous ultra low-k dielectric films. Recently gas assisted Xe plasma FIB has demonstrated uniform delayering of the metal and dielectric layers, achieving a planar surface of heterogeneous materials. In this paper, the successful application of this technique to delayer sub-20 nm microprocessor chips with real defects to root cause the failure is presented.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1473
Author(s):  
Licelander Hennessey-Ramos ◽  
Walter Murillo-Arango ◽  
Juliana Vasco-Correa ◽  
Isabel Cristina Paz Astudillo

Cocoa pod husks are a waste generated during the processing of cocoa beans. We aimed to explore the enzymatic extraction of pectin using cellulases. The extraction process was optimized using a central composite design (CCD) and analyzed by response surface methodology (RSM). The parameters optimized were feedstock concentration (%), enzyme dosage (µL/g), and time (h). Three dependent variables were studied: pectin yield (g/100 g dry husk) (R2 = 97.02), galacturonic acid content (g/100 g pectin) (R2 = 96.90), and galacturonic acid yield (g/100 g feedstock) (R2 = 95.35). The optimal parameters were 6.0% feedstock concentration, 40 µL g−1 of enzyme, and 18.54 h, conditions that produced experimentally a pectin yield of 10.20 g/100 g feedstock, 52.06 g galacturonic acid/100 g pectin, and a yield 5.31 g galacturonic acid/100 g feedstock. Using the chemical extraction method, a yield of 8.08 g pectin/100 g feedstock and a galacturonic acid content of 60.97 g/100 g pectin were obtained. Using assisted sonication, a pectin yield of 8.28 g/100 g feedstock and a galacturonic acid content of 42.77 g/100 g pectin were obtained. Enzymatically optimized pectin has rheological and physicochemical features typical of this biomaterial, which provides an interesting alternative for the valorization of cocoa husks.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1006
Author(s):  
Samsul Rizal ◽  
Abdul Khalil H. P. H. P. S. ◽  
A. A. Oyekanmi ◽  
Niyi G. Olaiya ◽  
C. K. Abdullah ◽  
...  

The exponential increase in textile cotton wastes generation and the ineffective processing mechanism to mitigate its environmental impact by developing functional materials with unique properties for geotechnical applications, wastewater, packaging, and biomedical engineering have become emerging global concerns among researchers. A comprehensive study of a processed cotton fibres isolation technique and their applications are highlighted in this review. Surface modification of cotton wastes fibre increases the adsorption of dyes and heavy metals removal from wastewater. Cotton wastes fibres have demonstrated high adsorption capacity for the removal of recalcitrant pollutants in wastewater. Cotton wastes fibres have found remarkable application in slope amendments, reinforcement of expansive soils and building materials, and a proven source for isolation of cellulose nanocrystals (CNCs). Several research work on the use of cotton waste for functional application rather than disposal has been done. However, no review study has discussed the potentials of cotton wastes from source (Micro-Nano) to application. This review critically analyses novel isolation techniques of CNC from cotton wastes with an in-depth study of a parameter variation effect on their yield. Different pretreatment techniques and efficiency were discussed. From the analysis, chemical pretreatment is considered the most efficient extraction of CNCs from cotton wastes. The pretreatment strategies can suffer variation in process conditions, resulting in distortion in the extracted cellulose’s crystallinity. Acid hydrolysis using sulfuric acid is the most used extraction process for cotton wastes-based CNC. A combined pretreatment process, such as sonication and hydrolysis, increases the crystallinity of cotton-based CNCs. The improvement of the reinforced matrix interface of textile fibres is required for improved packaging and biomedical applications for the sustainability of cotton-based CNCs.


2007 ◽  
Vol 90 (11) ◽  
pp. 3430-3434 ◽  
Author(s):  
Sverre M. Selbach ◽  
Mari-Ann Einarsrud ◽  
Thomas Tybell ◽  
Tor Grande

2020 ◽  
Author(s):  
Yafeng Ye ◽  
Shuoxun Wang ◽  
Kun Wu ◽  
Yan Ren ◽  
Hongrui Jiang ◽  
...  

Abstract Background: Cellulose synthase (CESA) mutants have potential use in straw processing due to their lower cellulose content, but almost all of the mutants exhibit defective phenotypes in plant growth and development. Balancing normal plant growth with reduced cellulose content remains a challenge, as cellulose content and normal plant growth are typically negatively correlated with one another. Result: Here, the rice (Oryza sativa) semi-dominant brittle culm (sdbc) mutant Sdbc1, which harbors a substitution (D387N) at the first conserved aspartic acid residue of OsCESA9, exhibits lower cellulose content and reduced secondary wall thickness as well as enhanced biomass enzymatic saccharification compared with the wild type (WT). Further experiments indicated that the OsCESA9D387N mutation may compete with the wild-type OsCESA9 for interacting with OsCESA4 and OsCESA7, further forming non-functional or partially functional CSCs. The OsCESA9/OsCESA9D387N heterozygous plants increase salt tolerance through scavenging and detoxification of ROS and indirectly affecting related gene expression. They also improve rice straw return to the field due to their brittle culms and lower cellulose content without any negative effects in grain yield and lodging. Conclusion: Hence, manipulation of OsCESA9D387N can provide the perspective of the rice straw for biofuels and bioproducts due to its improved enzymatic saccharification.


2017 ◽  
Vol 28 (2) ◽  
pp. 133 ◽  
Author(s):  
D. S. Kekulandara ◽  
P. C. G. Bandaranayake ◽  
D. N. Sirisena ◽  
W. L. G. Samarasinghe ◽  
L. D. B. Suriyagoda

Sign in / Sign up

Export Citation Format

Share Document