Effect of temperature and pre-annealing on the potential-induced degradation of silicon heterojunction photovoltaic modules

Author(s):  
Jiaming Xu ◽  
Huynh Thi Cam Tu ◽  
Atsushi MASUDA ◽  
Keisuke OHDAIRA

Abstract We investigate the effect of temperature and pre-annealing on the potential-induced degradation (PID) of silicon heterojunction (SHJ) photovoltaic (PV) modules. SHJ PV modules show a faster decrease in short-circuit current density (Jsc) at higher temperatures during PID tests. We also observe a complex relationship between the degree of the Jsc decrease and temperature during the PID tests. Pre-annealing before the PID tests at sufficiently high temperatures leads to the complete suppression of the PID of SHJ PV modules. The decrease in Jsc is known to be due to the chemical reduction of indium (In) in transparent conductive oxide (TCO) films in SHJ cells, in which water (H2O) in SHJ modules is involved. These indicate that H2O may out-diffuse from the SHJ PV modules during a PID test or pre-annealing at sufficiently high temperatures, by which the chemical reduction of indium in TCO into metallic In is suppressed.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1241 ◽  
Author(s):  
Bilel Chouchen ◽  
Mohamed Hichem Gazzah ◽  
Abdullah Bajahzar ◽  
Hafedh Belmabrouk

In this paper, a numerical model allows to analyze the photovoltaic parameters according to the electronic properties of InxGa1−xN/GaN MQW solar cells under the effect of temperature, the number of quantum wells and indium composition. The numerical investigation starts from the evaluation through the finite difference (FDM) simulation of the self-consistent method coupled with the photovoltaic parameters taking into account the effects of the spontaneous and piezoelectric polarization. The results found were consistent with the literature. As expected, the temperature had a negative impact on the performance of InGaN/GaN MQW solar cells. However, increasing the number of quantum wells improves cell performance. This positive impact further improves with the increase in the indium rate. The obtained results were 28 mA/cm2 for the short-circuit current density, 1.43 V for the open-circuit voltage, and the obtained conversion efficiency was 31% for a model structure based on 50-period InGaN/GaN-MQW-SC under 1-sun AM1.5G.


Clean Energy ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 222-226
Author(s):  
Gang Sun ◽  
Xiaohe Tu ◽  
Rui Wang

Abstract In order to accurately select photovoltaic modules under different climatic conditions, three kinds of polycrystalline silicon photovoltaic modules were prepared for this study using different properties of packaging materials and two typical climatic zones of China were selected for installation and operation of these photovoltaic (PV) modules. The photoelectric parameters (maximum power, open-circuit voltage, short-circuit current, etc.) and electroluminescence images of these modules were analysed before and after their operation for 6 months. The study found that the performance of PV modules in different climatic regions shows different decay tendency and degradation mechanism. There was a significant difference in the degradation of the three different types of PV modules in the sub-humid-hot region (Suzhou, Jiangsu); two kinds of photovoltaic modules using relatively poorly performing package materials showed significant potential-induced degradation effects. However, the degradation trend of the three different types of PV modules in the warm-temperate region (Kenli, Shandong) was consistent and no significant potential-induced degradation effect was observed.


2007 ◽  
Vol 1012 ◽  
Author(s):  
Sarah Messina ◽  
M.T.S. Nair ◽  
P. K. Nair

AbstractSolar cell structures with Sb2SxSe3-x and PbS as absorber layers were fabricated by chemical deposition on commercial transparent conductive oxide coated glass. The solid solution here was prepared by heating at 250°C a Sb2S3 thin film in contact with a chemically deposited Se-thin film. It has a graded band gap of 1-1.8 eV. A PbS thin film deposited on this layer basically fulfils the role of a p+ layer; its role as an absorber is yet to be studied. Open circuit voltage of 560 mV and short circuit current density ¡Ö 1mA/cm2under 1-3 kW/m2 tungsten halogen radiation are characteristics of these cells. Optimization of the film thicknesses and heating may offer prospects for these materials toward alternate thin film solar cell technology.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Erick Omondi Ateto ◽  
Makoto Konagai ◽  
Shinsuke Miyajima

We investigated the antireflective (AR) effect of hydrogenated nanocrystalline cubic silicon carbide (nc-3C-SiC:H) emitter and its application in the triple layer AR design for the front side of silicon heterojunction (SHJ) solar cell. We found that the nc-3C-SiC:H emitter can serve both as an emitter and antireflective coating for SHJ solar cell, which enables us to realize the triple AR design by adding one additional dielectric layer to normally used SHJ structure with a transparent conductive oxide (TCO) and an emitter layer. The optimized SHJ structure with the triple layer AR coating (LiF/ITO/nc-3C-SiC:H) exhibit a short circuit current density (Jsc) of 38.65 mA/cm2and lower reflectivity of about 3.42% at wavelength range of 300 nm–1000 nm.


2020 ◽  
Vol 89 (3) ◽  
pp. 30201 ◽  
Author(s):  
Xi Guan ◽  
Shiyu Wang ◽  
Wenxing Liu ◽  
Dashan Qin ◽  
Dayan Ban

Organic solar cells based on planar copper phthalocyanine (CuPc)/C60 heterojunction have been characterized, in which a 2 nm-thick layer of bathocuproine (BCP) is inserted into the CuPc layer. The thin layer of BCP allows hole current to tunnel it through but blocks the exciton diffusion, thereby altering the steady-state exciton profile in the CuPc zone (zone 1) sandwiched between BCP and C60. The short-circuit current density (JSC) of device is limited by the hole-exciton scattering effect at the BCP/CuPc (zone 1) interface. Based on the variation of JSC with the width of zone 1, the exciton diffusion length of CuPc is deduced to be 12.5–15 nm. The current research provides an easy and helpful method to determine the exciton diffusion lengths of organic electron donors.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


2021 ◽  
pp. 100783
Author(s):  
Christopher Rosiles-Perez ◽  
Sirak Sidhik ◽  
Luis Ixtilico-Cortés ◽  
Fernando Robles-Montes ◽  
Tzarara López-Luke ◽  
...  

Solar Energy ◽  
2017 ◽  
Vol 155 ◽  
pp. 1300-1305 ◽  
Author(s):  
Hiroyuki Mano ◽  
Md. Mijanur Rahman ◽  
Aika Kamei ◽  
Takashi Minemoto

Sign in / Sign up

Export Citation Format

Share Document