Improved field-effect mobility in transfer-free graphene films synthesized via the metal agglomeration technique using high-crystallinity Ni catalyst films

Author(s):  
Toshiharu KUBO ◽  
Akira Takahashi ◽  
Makoto Miyoshi ◽  
Takashi Egawa
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Do Won Kim ◽  
Hyeon Joong Kim ◽  
Changmin Lee ◽  
Kyoungdu Kim ◽  
Jin-Hyuk Bae ◽  
...  

Sol-gel processed SnO2 thin-film transistors (TFTs) were fabricated on SiO2/p+ Si substrates. The SnO2 active channel layer was deposited by the sol-gel spin coating method. Precursor concentration influenced the film thickness and surface roughness. As the concentration of the precursor was increased, the deposited films were thicker and smoother. The device performance was influenced by the thickness and roughness of the SnO2 active channel layer. Decreased precursor concentration resulted in a fabricated device with lower field-effect mobility, larger subthreshold swing (SS), and increased threshold voltage (Vth), originating from the lower free carrier concentration and increase in trap sites. The fabricated SnO2 TFTs, with an optimized 0.030 M precursor, had a field-effect mobility of 9.38 cm2/Vs, an SS of 1.99, an Ion/Ioff value of ~4.0 × 107, and showed enhancement mode operation and positive Vth, equal to 9.83 V.


1997 ◽  
Vol 9 (5) ◽  
pp. 389-391 ◽  
Author(s):  
Riadh Hajlaoui ◽  
Gilles Horowitz ◽  
Francis Garnier ◽  
Alexandre Arce-Brouchet ◽  
Laurent Laigre ◽  
...  

2014 ◽  
Vol 104 (23) ◽  
pp. 233306 ◽  
Author(s):  
Kenji Kotsuki ◽  
Hiroshige Tanaka ◽  
Seiji Obata ◽  
Sven Stauss ◽  
Kazuo Terashima ◽  
...  

2008 ◽  
Vol 9 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Yeong Don Park ◽  
Jung Ah Lim ◽  
Yunseok Jang ◽  
Minkyu Hwang ◽  
Hwa Sung Lee ◽  
...  

2018 ◽  
Vol 39 (3) ◽  
pp. 371-374 ◽  
Author(s):  
Ravindra Naik Bukke ◽  
Christophe Avis ◽  
Mude Narendra Naik ◽  
Jin Jang

1993 ◽  
Vol 297 ◽  
Author(s):  
Byung Chul Ahn ◽  
Jeong Hyun Kim ◽  
Dong Gil Kim ◽  
Byeong Yeon Moon ◽  
Kwang Nam Kim ◽  
...  

The hydrogenation effect was studied in the fabrication of amorphous silicon thin film transistor using APCVD technique. The inverse staggered type a-Si TFTs were fabricated with the deposited a-Si and SiO2 films by the atmospheric pressure (AP) CVD. The field effect mobility of the fabricated a-Si TFT is 0.79 cm2/Vs and threshold voltage is 5.4V after post hydrogenation. These results can be applied to make low cost a-Si TFT array using an in-line APCVD system.


Sign in / Sign up

Export Citation Format

Share Document