Review of Transverse Beam Profile Measurements Using Synchrotron Radiation

2020 ◽  
Vol 1 (2) ◽  
pp. 13-18
Author(s):  
Emy Mulyani, J.W. Flanagan

Abstract –Synchrotron radiation (SR) is a tool for non-destructive beam diagnostics since its characters are substantially related to those of the source beam. The spectrum of SR is extremely intense and extends over a broad energy range from the infrared through the visible and ultraviolet, into the soft and hard X-ray regions of the electromagnetic spectrum. The visible light (400 – 800 nm) and X-ray (0.05 – 0.3 nm) regions are used in the beam instrumentation. In the visible light region, transverse beam profile or size diagnostics can be done by an interferometer (light is observed as a wave). Meanwhile, in the submicron beam size measurements, the X-ray SR monitor is commonly used. This paper reports the review of transverse beam profile measurements using SR covering principles and practical experiences with the technique at some accelerator facilities such as Photon Factory, Diamond Light Source, CesrTA, and SuperKEKB. Key words: accelerator, beam instrumentation, transverse beam profile, synchrotron radiation, X-ray, visible light

1998 ◽  
Vol 524 ◽  
Author(s):  
S. Brennan ◽  
P. Pianetta ◽  
S. Ghosh ◽  
N. Takaura ◽  
C. Wiemer ◽  
...  

ABSTRACTSynchrotron-based total-reflection x-ray fluorescence(SR-TXRF) has been developed as a leading technique for measuring wafer cleanliness. It holds advantages over other techniques in that it is non-destructive and allows mapping of the surface. The highest sensitivity observed thus far is 3x108 atoms/cm 2 (- 3fg) for 1000 second count time. Several applications of SR-TXRF are presented which take advantage of the energy tunability of the synchrotron source or the mapping capability.


1998 ◽  
Vol 5 (3) ◽  
pp. 642-644 ◽  
Author(s):  
J. Y. Huang ◽  
I. S. Ko

A diagnostic beamline is being constructed in the PLS storage ring for measurement of electron- and photon-beam properties. It consists of two 1:1 imaging systems: a visible-light imaging system and a soft X-ray imaging system. In the visible-light imaging system, the transverse beam size and beam position are measured with various detectors: a CCD camera, two photodiode arrays and a photon-beam position monitor. Longitudinal bunch structure is also investigated with a fast photodiode detector and a picosecond streak camera. On the other hand, the soft X-ray imaging system is under construction to measure beam sizes with negligible diffraction-limited error. The X-ray image optics consist of a flat cooled mirror and two spherical focusing mirrors.


2010 ◽  
pp. 109-117 ◽  
Author(s):  
Neda Motchurova-Dekova ◽  
David Harper

Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In ?Rhynchonella? flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.


2011 ◽  
Vol 675-677 ◽  
pp. 1025-1029
Author(s):  
Hui Zhang ◽  
Xiao Meng Lü ◽  
Jian Lin Ding ◽  
Ji Min Xie ◽  
Chang Hao Yan

Using Y2O3, Mn(CH3COO)2·4H2O as raw materials and glacial acetic acid as solvents, YMnxFe1-xO3 precursors (x= 0, 0.05, 0.1, 0.3, 0.5) have been prepared under 80°C water bath conditions. Perovskite YMnxFe1-xO3 samples were achieved after calcination over 900 °C for 4 h. Structure of the samples was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Ultraviolet obvious diffuse reflection(UV-vis DRS), and Field-emission scanning electron microscopy (FESEM). Photocatalytic activity of the samples was also investigated. Results showed that all the samples with stable perovskite structure had high light absorption in visible-light region, suggesting good visible light harvesting. SEM image showed that the samples were sponge-like and porous agglomerates. Photodecoloration activity of 100 mL Rhodamine B (10 mg/L) was 16~56 % under illumination for 150 min. Oxygen vacancies of the perovskite may explain the high activity of x = 0.1 sample.


NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650035 ◽  
Author(s):  
Lin Ma ◽  
Limei Xu ◽  
Xuyao Xu ◽  
Xiaoping Zhou ◽  
Lingling Zhang

Sulfur-doped SnO2 nanoparticles with ultrafine sizes have been successfully prepared by a one-pot hydrothermal method. The obtained samples are characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), thermogravimetric (TG), analyzer UV-Vis spectroscopy, photoluminescence (PL) and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the doping level of sulfur element as well as the bandgaps of SnO2 can be controlled to a certain extent by varying the amount of L-cysteine (L-cys). When evaluated as photocatalysts in the degradation of rhodamine B (RhB) and reduction of Cr(VI) under visible light region, the resultant sulfur-doped SnO2 nanoparticles demonstrate obviously enhanced photocatalytic activities due to the markedly improved visible light response and effective separation of the photo-generated electron–hole pairs.


2011 ◽  
Vol 181-182 ◽  
pp. 348-351
Author(s):  
Yi Ding ◽  
Xiao Jun Xu ◽  
Zhang Hua Gan ◽  
Rui Xiong ◽  
Hai Lin Liu

TiO2 nanoparticles doped with different cobalt concentrations were fabricated by using so-gel method. The crystal structures and the morphology of the samples were characterized by using x-ray diffractmetry (XRD) and transmission electron microscopy (TEM), respectively. It was found that all the samples are anatase phase and the nanoparticles are of the size around 10 nm. Investigations of the binding energies of different element with X-ray photoelectron spectrometry (XPS) revealed that Co ions are in Co2+ state and take the substitutional sites. No Co clusters were detected in the samples. The optical absorption properties of the samples were studied by using UV-vis absorption spectroscopy. It was noticed that cobalt doped TiO2 has a significant visible light absorption in contrast to pure TiO2: besides a noticeable red shift in absorption edge, an extra visible light absorption peak appears at a wavelength around 600 nm. The visible absorption in cobalt doped TiO2 may attribute to the electron transition from impurity levels induced by the substitutional Co ions and the oxygen vacancies to the conduct band.


2013 ◽  
Vol 860-863 ◽  
pp. 907-910
Author(s):  
Xiao Xia Lin ◽  
Jia Liu ◽  
De Gang Fu

B-doped TiO2nanotube arrays (B-TNTs) were synthesized by anodization method combined with dip-calcination technique. The physicochemical properties and surface morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectrum (DRS). Methyl blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of B-TNTs under visible light irradiation. The results show B-TNTs shifts the absorption edge of TiO2nanotube arrays to the visible light region and B-TNTs displays higher photocatalytic activity compared with undoped TNTs.


Sign in / Sign up

Export Citation Format

Share Document