scholarly journals Displacement Analysis of Compliant Mechanism

Everyone expects accurate outcomes in the fast-moving and extremely competitive globe today. The urgent need for precision led to developing new processes in a rapidly increasing mechanical and mechatronic globe, which serve the primary objective of accuracy. This special class of mechanism is called compliant mechanisms, which are used to improve the precision without compromising the accuracy of a member because of the steadiness and flexion. Motion is produced by the molecular deformation in compliant systems, leading to two main features of bending–soft movement and a tiny scope of movement. Scan The demand for contemporary techniques, for example the production of micronanos, characterization systems, such as microscopes is present in the scan processes. For the accurate control / manipulation of object position, different compliant based mechanisms are created. Flexures are compliant, elastic structures which produce smooth motions, tiny range and high resolution for their functionality. These processes can be used in precise apps such as micro soldering, lithographic micro-manufacturing wafer alignment. The primary aim is therefore to design an accurate system in a linear as well as in a rotational direction that gives accurate movement.The software of ANSYS is used to generate compliant mechanism parametric and static analysis models.

Author(s):  
Sree Kalyan Patiballa ◽  
Sreeshankar Satheeshbabu ◽  
Girish Krishnan

Abstract Transmission members such as gears and linkages are ubiquitously used in mechatronic systems to tailor the performance of actuators. However, in most bio-inspired soft systems the actuation and transmission members are closely integrated, and sometimes indistinguishable. Embedded actuation is greatly advantageous for attaining high stroke and transferring large output forces. This paper attempts at a systematic synthesis of compliant systems with embedded contractile actuators and passive members to achieve a particular kinematic objective. The paper builds on recent understanding of a compliant mechanism topology where the constituent members can be functionally classified as load transferring transmitters and strain energy storing constraints. The functional equivalence between the transmitter members and actuators are used to replace transmitters in tension with contractile actuators, thus realizing a compliant embedded system. Once a single-input single-output compliant mechanism is designed, and its load flow behavior mapped, systematic guidelines and best practices are established for embedding actuators within the topology to increase performance without altering the kinematic behavior. Several examples, including a prototype that used soft pneumatic artificial muscles is presented to validate the synthesis framework. The initial results will form the basis for designing fully autonomous compliant systems with embedded actuators and sensors without the use of computationally expensive techniques.


Author(s):  
Lucio Flavio Campanile ◽  
Stephanie Kirmse ◽  
Alexander Hasse

Compliant mechanisms are alternatives to conventional mechanisms which exploit elastic strain to produce desired deformations instead of using moveable parts. They are designed for a kinematic task (providing desired deformations) but do not possess a kinematics in the strict sense. This leads to difficulties while assessing the quality of a compliant mechanism’s design. The kinematics of a compliant mechanism can be seen as a fuzzy property. There is no unique kinematics, since every deformation need a particular force system to act; however, certain deformations are easier to obtain than others. A parallel can be made with measurement theory: the measured value of a quantity is not unique, but exists as statistic distribution of measures. A representative measure of this distribution can be chosen to evaluate how far the measures divert from a reference value. Based on this analogy, the concept of accuracy and precision of compliant systems are introduced and discussed in this paper. A quantitative determination of these qualities based on the eigenvalue analysis of the hinge’s stiffness is proposed. This new approach is capable of removing most of the ambiguities included in the state-of-the-art assessment criteria (usually based on the concepts of path deviation and parasitic motion).


Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.


Author(s):  
Femke M. Morsch ◽  
Just L. Herder

The objective of this paper is to design a generic zero stiffness compliant joint. This compliant joint could be used as a generic construction element in a compliant mechanism. To avoid the spring-back behavior of conventional compliant joints, the principle of static balancing is applied, implying that for each position of the joint the total potential energy should be constant. To this end, a conventional balanced mechanism, consisting of two pivoted bodies which are balanced with two zero-free-length springs, is taken as an initial concept. The joint is replaced by a compliant cross-axis flexural pivot and each spring is replaced by a pair of compliant leaf springs. For both parts an analytic model was implemented and a configuration with the lowest energy fluctuation was found through optimization. A FEA model was used to verify the analytic model of the optimized design. A prototype was manufactured and tested. Both the FEA model and the experiment confirm the reduction of the needed moment to rotate the compliant joint. The experiment shows the balanced compliant joint is not completely balanced but the moment required to rotate the joint is reduced by 70%. Thus, a statically balanced compliant generic joint element was designed which bears great promise in designing statically balanced compliant mechanisms and making this accessible to any designer.


1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
Girish Krishnan ◽  
Charles Kim ◽  
Sridhar Kota

Visualizing load flow aids in conceptual design synthesis of machine components. In this paper, we present a mathematical framework to visualize load flow in compliant mechanisms and structures. This framework uses the concept of transferred forces to quantify load flow from input to the output of a compliant mechanism. The key contribution of this paper is the identification a fundamental building block known as the Load-Transmitter Constraint (LTC) set, which enables load flow in a particular direction. The transferred force in each LTC set is shown to be independent of successive LTC sets that are attached to it. This enables a continuous visualization of load flow from the input to the output. Furthermore, we mathematically relate the load flow with the deformation behavior of the mechanism. We can thus explain the deformation behavior of a number of compliant mechanisms from literature by identifying its LTC sets to visualize load flow. This method can also be used to visualize load flow in optimal stiff structure topologies. The insight obtained from this visualization tool facilitates a systematic building block based design methodology for compliant mechanisms and structural topologies.


2001 ◽  
Author(s):  
Hima Maddisetty ◽  
Mary Frecker

Abstract Piezoceramic actuators have gained widespread use due to their desirable qualities of high force, high bandwidth, and high energy density. Compliant mechanisms can be designed for maximum stroke amplification of piezoceramic actuators using topology optimization. In this paper, the mechanical efficiency and other performance metrics of such compliant mechanism/actuator systems are studied. Various definitions of efficiency and other performance metrics of actuators with amplification mechanisms from the literature are reviewed. These metrics are then applied to two compliant mechanism example problems and the effect of the stiffness of the external load is investigated.


Author(s):  
A. Saxena ◽  
Steven N. Kramer

Abstract Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads for which, traditional methods of deflection analysis do not apply Nonlinearities introduced by these large deflections make the system comprising such members difficult to solve Parametric deflection approximations are then deemed helpful in the analysis and synthesis of compliant mechanisms This is accomplished by seeking the pseudo-rigid-body model representation of the compliant mechanism A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads with positive end moments A numerical integration technique using quadrature formulae has been employed to solve the nonlinear Bernoulli-Euler beam equation for the tip deflection Implementation of this scheme is relatively simpler than the elliptic integral formulation and provides nearly accurate results Results of the numerical integration scheme are compared with the beam finite element analysis An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
A. Midha ◽  
I. Her ◽  
B. A. Salamon

Abstract A broader research proposal seeks to systematically combine large-deflection mechanics of flexible elements with important kinematic considerations, in yielding compliant mechanisms which perform useful tasks. Specifically, the proposed design methodology will address the following needs: development of the necessary nomenclature, classification and definitions, and identification of the kinematic properties; categorization of mechanism synthesis types, both structurally as well as by function; development of efficient computational techniques for design; consideration of materials; and application and validation. Contained herein, in particular, is an introduction to the state-of-the-art in compliant mechanisms, and the development of an accurate chain calculation algorithm for use in the analysis of a large-deflection, cantilevered elastica. Shooting methods, which permit specification of additional boundary conditions on the elastica, as well as compliant mechanism examples are presented in a companion paper.


Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract Compliant mechanisms gain some or all of their mobility from the flexibility of their members rather than from rigid-body joints only. More efficient and usable analysis and design techniques are needed before the advantages of compliant mechanisms can be fully utilized. In an earlier work, a pseudo-rigid-body model concept, corresponding to an end-loaded geometrically nonlinear, large-deflection beam, was developed to help fulfill this need. In this paper, the pseudo-rigid-body equivalent spring stiffness is investigated and new modeling equations are proposed. The result is a simplified method of modeling the force/deflection relationships of large-deflection members in compliant mechanisms. Flexible segments which maintain a constant end angle are discussed, and an example mechanism is analyzed. The resulting models are valuable in the visualization of the motion of large-deflection systems, as well as the quick and efficient evaluation and optimization of compliant mechanism designs.


Sign in / Sign up

Export Citation Format

Share Document