scholarly journals Spectrum Opportunity Detection in Cellular Networks

The signal propagation over wireless channels cannot be predicted perfectly due to numerous factors such as fading, channel interference and obstacles. An interference footprint is required to be estimated accurately for evaluation of the spatial spectrum opportunity. It is difficult to determine the spatial spectrum opportunities available in uplink bands of cellular networks due to different location of primary users at different times. In this research work, spatial spectrum opportunity in uplink bands of cellular network is determined using an efficient computational geometry tool for realistic scenario. Our results shows that the performance of umbrella footprints based approach is better than that of conventional circular footprints based approach in terms of false alarm and missed detection probabilities.

Author(s):  
K. N. Rama Mohan Babu ◽  
K.N. Balasubramanya Murthy ◽  
G.V. Pavithra ◽  
K.R Mamatha

Handling of emergency calls in wireless cellular networks is one of the major issues. The main objective here is to improve quality of service by efficient channel utilization. In this paper, a new scheme called probabilistic emergency prioritization scheme (PEPS) is proposed which provides highest priority for emergency calls. The proposed method minimizes the dropping or blocking of emergency calls even if the number of emergency calls are more than 25% of the calls. Monte Carlo simulation results show that the proposed scheme works better than the existing adaptive probabilistic scheduling scheme (APS).


2012 ◽  
Vol 462 ◽  
pp. 336-343
Author(s):  
Zhen Quan Qin ◽  
De Long Liu ◽  
Wei Feng Sun ◽  
Yan Hu ◽  
Huang Hui

Energy detection is the most commonly used algorithm in spectrum sensing. For Unknown signal, the current energy detection has shortcomings on the performance of perceiving the primary users signals in AWGN channel or fading channel. The diversity technology can receive the correlation signals which contain the same information in different branches, then merge and output the signals to reduce the probability of deep fading at the receiving terminal greatly. Therefore, we introduce diversity into the energy detection to improve the ability of detection. Simulation result shows that, it can improve the cognitive ability and obtain diversity gain through reducing the impact of fading. With the increase of diversity numbers, our method obtains lower probability of false alarm detection and performs much better than the traditional energy detection.


Author(s):  
Satyasrikanth Palle ◽  
Shivashankar

Objective: The demand for Cellular based multimedia services is growing day by day, in order to fulfill such demand the present day cellular networks needs to be upgraded to support excessive capacity calls along with high data accessibility. Analysis of traffic and huge network size could become very challenging issue for the network operators for scheduling the available bandwidth between different users. In the proposed work a novel QoS Aware Multi Path scheduling algorithm for smooth CAC in wireless mobile networks. The performance of the proposed algorithm is assessed and compared with existing scheduling algorithms. The simulation results show that the proposed algorithm outperforms existing CAC algorithms in terms of throughput and delay. The CAC algorithm with scheduling increases end-to-end throughput and decreases end-to-end delay. Methods: The key idea to implement the proposed research work is to adopt spatial reuse concept of wireless sensor networks to mobile cellular networks. Spatial reusability enhances channel reuse when the node pairs are far away and distant. When Src and node b are communicating with each other, the other nodes in the discovered path should be idle without utilizing the channel. Instead the other nodes are able to communicate parallelly the end-to-end throughput can be improved with acceptable delay. Incorporating link scheduling algorithms to this key concept further enhances the end-to-end throughput with in the turnaround time. So, in this research work we have applied spatial reuse concept along with link scheduling algorithm to enhance end-to-end throughput with in turnaround time. The proposed algorithm not only ensures that a connection gets the required bandwidth at each mobile node on its way by scheduling required slots to meet the QoS requirements. By considering the bandwidth requirement of the mobile connections, the CAC module at the BS not only considers the bandwidth requirement but also conforming the constrains of system dealy and jitter are met. Result: To verify the feasibility and effectiveness of our proposed work, with respect to scheduling the simulation results clearly shows the throughput improvement with Call Admission Control. The number of dropped calls is significantly less and successful calls are more with CAC. The percentage of dropped calls is reduced by 9 % and successful calls are improved by 91%. The simulation is also conducted on time constraint and ratio of dropped calls are shown. The total time taken to forward the packets and the ration of dropped calls is less when compared to non CAC. On a whole the CAC with scheduling algorithms out performs existing scheduling algorithms. Conclusion: In this research work we have proposed a novel QoS aware scheduling algorithm that provides QoS in Wireless Cellular Networks using Call Admission Control (CAC). The simulation results show that the end-to-end throughput has been increased by 91% when CAC is used. The proposed algorithm is also compared with existing link scheduling algorithms. The results reveal that CAC with scheduling algorithm can be used in Mobile Cellular Networks in order to reduce packet drop ratio. The algorithm is also used to send the packets within acceptable delay.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4618
Author(s):  
Francisco Oliveira ◽  
Miguel Luís ◽  
Susana Sargento

Unmanned Aerial Vehicle (UAV) networks are an emerging technology, useful not only for the military, but also for public and civil purposes. Their versatility provides advantages in situations where an existing network cannot support all requirements of its users, either because of an exceptionally big number of users, or because of the failure of one or more ground base stations. Networks of UAVs can reinforce these cellular networks where needed, redirecting the traffic to available ground stations. Using machine learning algorithms to predict overloaded traffic areas, we propose a UAV positioning algorithm responsible for determining suitable positions for the UAVs, with the objective of a more balanced redistribution of traffic, to avoid saturated base stations and decrease the number of users without a connection. The tests performed with real data of user connections through base stations show that, in less restrictive network conditions, the algorithm to dynamically place the UAVs performs significantly better than in more restrictive conditions, reducing significantly the number of users without a connection. We also conclude that the accuracy of the prediction is a very important factor, not only in the reduction of users without a connection, but also on the number of UAVs deployed.


2014 ◽  
Vol 1 (3) ◽  
pp. 360-364 ◽  
Author(s):  
Niek Hijnen ◽  
Paul S. Clegg

Removing the continuous phase of a Pickering emulsion of partially miscible liquids by selective evaporation provides a one-step route to assembling colloidal particles into a cellular network.


Author(s):  
Saurabh Dixit ◽  
Himanshu Katiyar ◽  
Arun Kumar Singh

There has been a paradigm shift in the field of mobile communication, with an overwhelming increase in data usage. As more and more users are migrating to smartphones, the amount of data being transmitted has increased. However, huge amounts of data and signal propagation are bound to be detrimental to the ecological balance. Long-term evolution (LTE), due to its flexibility and backward compatibility, has emerged as the network of choice for 4G and beyond. In this chapter, the significance of core technologies for LTE network is highlighted, along with the inherent advantage of reducing the energy consumption of cellular network. An energy-efficient design of LTE is proposed that blends the technologies proposed by 3GPP such as adaptive OFDMA with that of MU-MIMO.


2019 ◽  
Vol 67 (5) ◽  
pp. 3651-3664 ◽  
Author(s):  
Hao Chen ◽  
Lingjia Liu ◽  
Harpreet S. Dhillon ◽  
Yang Yi

Sign in / Sign up

Export Citation Format

Share Document