scholarly journals Optimization of Binder for Improving Strength and Shatter Index of Briquettes for BOF Dust using Design of Experiments

Effectiveness of Recycling of steel plant waste is very much dependent on agglomeration technique. Sintering, pelletization and briquetting are some of the techniques which are frequently used for waste utilization. Aim of this study is to prepare composite briquettes by cold bonding technique, by which phsico-chemical changesoccurred at room temperature or low temperature. Two binders are mixed in proportion to achieve the required properties specifically strength and shatter index. The design of experiments is used to find the proper combination of binders to get the optimum value of properties. Experimental work for the same is carried out in such a way that minimum number of experiment can give output as desired. For this ‘Design of Experiment’ methodology is applied to select the runs of experiment. After the selection of orthogonal array and experiment combinations, Taguchi technique is used with two variable (starch and molasses) and three levels (2.5%, 5% and 7.5% of each) i.e. L9 Array to analyze the results. Minitab15 software is used. Conclusion and comments are based on the same.

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 002543-002566
Author(s):  
Daniel Harris ◽  
Robert Dean ◽  
Ashish Palkar ◽  
Mike Palmer ◽  
Charles Ellis ◽  
...  

Low–temperature bonding techniques are of great importance in fabricating MEMS devices, and especially for sealing microfluidic MEMS devices that require encapsulation of a liquid. Although fusion, thermocompression, anodic and eutectic bonding have been successfully used in fabricating MEMS devices, they require temperatures higher than the boiling point of commonly used fluids in MEMS devices such as water, alcohols and ammonia. Although adhesives and glues have been successfully used in this application, they may contaminate the fluid in the MEMS device or the fluid may prevent suitable bonding. Indium (In) possesses the unusual property of being cold weldable. At room temperature, two sufficiently clean In surfaces can be cold welded by bringing them into contact with sufficient force. The bonding technique developed here consists of coating and patterning one Si wafer with 500A Ti, 300A Ni and 1 μm In through electron beam evaporation. A second wafer is metallized and patterned with a 500A Ti and 1 μm Cu by electron beam evaporation and then electroplated with 10 μm of In. Before the In coated sections are brought into contact, the In surfaces are chemically cleaned to remove indium-oxide. Then the sections are brought into contact and held under sufficient pressure to cold weld the sections together. Using this technique, MEMS water-filled and mercury-filled microheatpipes were successfully fabricated and tested. Additionally, this microfabrication technique is useful for fabricating other types of MEMS devices that are limited to low-temperature microfabrication processes.


2021 ◽  
Vol 1034 ◽  
pp. 207-218
Author(s):  
Velaphi Msomi ◽  
Sipokazi Mabuwa

The quality of the friction stir processed (FSPed) depends on the proper combination of processing parameters. The proper combination can only be found when a series of experiments have been conducted. However, the Taguchi technique was developed as a way of reducing numerous experiments that are time-consuming and costly. This paper reports on the optimization of parameters for the FSP that is conducted underwater (SFSP) and room temperature (NFSP). The Taguchi L18 method was employed in the design of experiments. The four factors used for the analysis had three factors with three-levels and one with two levels. The parameter combinations for SFSP were different from the combination found for NFSP. The level of parameter sensitivity was found to be influenced by the processing condition.


1996 ◽  
Vol 439 ◽  
Author(s):  
C. Degueldre ◽  
P. Heimgartner ◽  
G. Ledergerber ◽  
N. Sasajima ◽  
K. Hojou ◽  
...  

AbstractThe behaviour of ZrO2-10%YO1.5-5%ErO1.5-( 10%ThO2) (At %) cubic solid solutions under low and high energy Xe ion irradiation up to a fluence of 1.8·1016 Xe.cm−2 was investigated by TEM. Low energy (60 keV) Xe ions did not yield amorphization. From the observed bubble formation, swelling values of less than one volume per cent were estimated to be 0.19–0.72% during irradiation at room temperature or at high temperature (925 K). Furthermore, no amorphization was obtained by Xe irradiation under extreme conditions such as high energy (1.5 MeV) Xe ion and low temperature (20 K). This confirms the robustness of this material and argues in favour of the selection of zirconia based material as an advanced nuclear fuel for plutonium disposition.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2020 ◽  
pp. 73-75
Author(s):  
B.M. Bazrov ◽  
T.M. Gaynutdinov

The selection of technological bases is considered before the choice of the type of billet and the development of the route of the technological process. A technique is proposed for selecting the minimum number of sets of technological bases according to the criterion of equality in the cost price of manufacturing the part according to the principle of unity and combination of bases at this stage. Keywords: part, surface, coordinating size, accuracy, design and technological base, labor input, cost price. [email protected]


Sign in / Sign up

Export Citation Format

Share Document