scholarly journals The Impact of the Treatment Method of Root Crops on Micro flora during their Storage

The study aims at determining the effect of the treatment method of root crops before storage, as well as storage parameters, on the dynamics of their microflora, namely, the quantity of bacterial microflora, mesophilic aerobic and optionally anaerobic microorganisms (MAaOAM), as well as molds. When storing garden carrot at t = +(2±1) °C (during 56 days), the amount of bacterial microflora of the samples subjected to integrated treatment decreased by 2.5 times by the end of storage; the number of mold fungi decreased twice compared to the control. When storing garden carrot at t = +(25±1) °C (for 21 days) the amount of bacterial microflora in the samples treated by electromagnetic fields of extremely low frequencies (with the following parameters: frequency – 28 Hz, the treatment time – 5 min, the magnetic induction – 12 mTl), and by Vitaplan biologic preparation (at the concentration of 106 CFU/g, and in the amount of 2.5 ml/kg), decreased by 2.1 times, while the number of mold fungi reduced by 1.5 times. When storing garden beet at t = +(2±1) °C for 56 days, the amount of bacterial microflora of samples, subjected to integrated treatment for 5 min at a frequency of 15, 24, and 30 Hz, and magnetic induction of 9 mTl, as well as treatment with Bactofit biological preparation (at the concentration of 106 CFU/g in amount of 2.5 ml/kg), decreased by 1.5 times compared to the control, while the number of mold fungi decreased by 2.3 times. When storing garden beet at t = +(25±1) °C (for 21 days), the quantity of bacterial microflora of samples, subjected to integrated treatment, was by 2.8 times lower compared to the control, while the number of mold fungi reduced by 1.8 times. It has been revealed that the integrated treatment of root crops with biopreparations and extremely low frequency (ELF) electric and magnetic fields (EMF) more effectively inhibits the development of pathogenic microflora compared to treatment only with biopreparations or treatment only by ELF-EMF. Significant retardation of growth rates was revealed in both bacterial and fungal pathogenic microflora during storage of root crops at different temperatures.

2019 ◽  
pp. 62-64
Author(s):  
S. R. Gasanov ◽  
S. A. Mammadova

The study of the dynamics of plant growth and yield of vegetable crops (carrot variety Absheron winter (Daucus carota subsp. sativus (Hoffm.) Schьbl.) and radish variety Virovsky white (Raphanus sativus var.radicula Pers.)) was conducted in the field conditions after presowing exposure to different temperatures: I option – sowing of seeds exposed to low temperatures (for 15 days the swollen for 24 hours seeds were kept at a temperature of 0±1°С); Option II - sowing of seeds exposed to variable temperatures (for 5 days, the swollen for 24 hours seeds were exposed to variable temperatures of + 20°C (8 hours) and 0±1°C (16 hours) and then 10 days at a temperature of 0±1°C; K1 – sowing dry seeds; K2 – sowing soaked seeds. The impact on the seeds of low and variable temperatures caused an increase in growth processes, both in radish and carrot. Both studied crops showed a tendency to increase the yield to a greater extent when exposed to swollen seeds with variable temperatures. Thus, the average weight of radish crops exceeded the control variant by 47.1% and carrots by 27.6%. The yield of root crops per m2increased by 36.4% for radish and 30.0% for carrot. To increase the productivity of vegetable crops, we recommend using the studied methods of pre-sowing seed treatment in practice.


2014 ◽  
Vol 1 (2) ◽  
pp. 140166 ◽  
Author(s):  
Kathrin Kugler ◽  
Lutz Wiegrebe ◽  
Benedikt Grothe ◽  
Manfred Kössl ◽  
Robert Gürkov ◽  
...  

Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing.


2018 ◽  
Vol 845 ◽  
Author(s):  
Samuele Viaro ◽  
Pierre Ricco

The neutral curves of the boundary layer Görtler-vortex flow generated by free-stream disturbances, i.e., curves that distinguish the perturbation flow conditions of growth and decay, are computed through a receptivity study for different Görtler numbers, wavelengths, and low frequencies of the free-stream disturbance. The perturbations are defined as Klebanoff modes or strong and weak Görtler vortices, depending on their growth rate. The critical Görtler number below which the inviscid instability due to the curvature never occurs is obtained and the conditions for which only Klebanoff modes exist are thus revealed. A streamwise-dependent receptivity coefficient is defined and we discuss the impact of the receptivity on the $N$-factor approach for transition prediction.


Author(s):  
Konstantina Chrysouli ◽  
Dimitrios Kikidis

<p class="abstract">Noise induced hearing loss (NIHL) is regarded as a serious problem and one of the most recorded occupational disorders in Europe and in the rest of the world and amounts to between 7% and 21% of the hearing loss. Aim of this study is to explore the development and the prevalence of low frequency noise-induced hearing loss (NIHL) in a hospital, especially in microbiology laboratory workers. Generally it is known that 4 KHz is the main NIHL frequency. Despite current theories, our study suggests for the first time the impact of low frequency noise in hearing loss among laboratory workers. According to the results, the population examined, namely the employees at the Microbiology Department of the Hospital, showed lower hearing levels compared to the control group, who had no history of occupational exposure to noise. There are many other studies which suggest that prolonged exposures to high noise levels have negative physiological and psychological effects on workers. The finding of the correlation of noise frequency with the frequency of the generated hearing loss is involved in the controversy about the pathophysiology of noise effect.</p>


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Martino Marini ◽  
Roberto Baccoli ◽  
Costantino C. Mastino ◽  
Antonino Di Bella ◽  
Carlo Bernardini ◽  
...  

The noise production from wind turbines (WT) and its propagation into the surrounding environment have an impact on the receptors (RC) that have to be accurately predicted within the environmental impact assessment. The low-frequency noise (LFN) is of special concern for it is typical of wind systems and it involves specific computational issues. The purpose of this study is to apply and compare the assessment procedures currently used in different European countries for the prediction of LFN produced by wind turbines, with reference to a specific case. The results of the calculations for a planned wind farm in northern Sardinia, Italy, obtained by the available computational tools and with the help of the presented predictive models are presented and discussed. It can be deduced from this that the impact due to the low frequencies noise generated by wind turbines in the vicinity of sensitive receptors is negligible in terms of generated sound pressure levels (SPLs), even though further investigations on such a topic are needed.


2007 ◽  
Vol 1056 ◽  
Author(s):  
Betzaida Batalla Garcia ◽  
Aaron M. Feaver ◽  
Richard Champion ◽  
Qifeng Zhang ◽  
Tim T. Fister ◽  
...  

ABSTRACTIn this study a group of resorcinol-formaldehyde carbon cryogels (CC) have been processed chemically, via catalysis and activation, to obtain varied nanostructures and pore size distributions. To understand the relation between structure and electrochemical properties the capacitor can be studied as a dielectric system composed of a porous electrode and the electrolyte (Tetraethylammonium tetrafluoroborate in propylene carbonate). Using Electrochemical impedance spectroscopy (EIS) the complex capacitance and power are used to study the behavior of the system below the relaxation frequency fo (φ = −45°). Therefore, the relaxation of the capacitor system at the low frequency range, f < fo, may be used as a measure of pore/electrolyte interaction. The approach here proposed also allows for a direct experimental characterization of the capacitance and power at low frequencies where small pores are likely to affect the diffusion dynamics of the electrolyte molecules. The results suggest a correlation between the occurrence of small micropores and that of high power losses that are related to the resistive element produced at the low frequency range. Moreover, the impact of the micropore structure upon the supercapacitor's performance is apparent in its capacitance and energy as well. In addition to the complex power and capacitance other measurements including BET Nitrogen sorption, cyclic voltammetry, galvanic cycling and X-Ray Raman Scattering were used to characterize the samples and support these results.


2017 ◽  
Vol 24 (02) ◽  
pp. 1750006 ◽  
Author(s):  
Filippo Giraldi

Variations of the bath energy are compared with the information flow in local dephasing channels. Special correlated initial conditions are prepared from the thermal equilibrium of the whole system, by performing a selective measurement on the qubit. The spectral densities under study are ohmic-like at low frequencies and include logarithmic perturbations of the power-law profiles. The bath and the correlation energy alternately increase or decrease, monotonically, over long times, according to the value of the ohmicity parameter, following logarithmic and power laws. Consider initial conditions such that the environment is in a thermal state, factorized from the state of the qubit. In the superohmic regime the long-time features of the information flow are transferred to the bath and correlation energy, by changing the initial condition from the factorized to the specially correlated, even with different temperatures. In fact, the low-frequency structures of the spectral density that provide information backflow with the factorized initial condition, induce increasing (decreasing) bath (correlation) energy with the specially correlated initial configuration. By performing the same change of initial conditions, the spectral properties providing information loss, produce decrease (increase) of the bath (correlation) energy.


Author(s):  
Rubén Saborido ◽  
Venera Venera Arnaoudova ◽  
Giovanni Beltrame ◽  
Foutse Khomh ◽  
Giuliano Antoniol

Energy consumption is a major concern when developing and evolving mobile applications. The user wishes to access fast and powerful mobile applications, which is usually in contrast to optimized battery life and heat generation. The software engineering community have acknowledged the relevance of the problem and researchers are investigating ways to reduce energy consumption, for example by examining which library, device configuration, and applications parameters should be used to promote long battery life. We conjecture that these studies are at the border between hardware and software and we must be careful on how the energy consumption is measured and how the energy consumption is attributed to methods and libraries.To the best of our knowledge, no previous work investigates how much energy and power consumption is due to high frequency events missed when sampling at low frequencies such as 10 kHz and verified the error at the precision of method level. Low frequency sampling is a rough approximation that hinders the understanding of fine grain details: the real picture of energy consumption as well as the root causes are missed. This has profound implications on the choice of methods to evolve or components to replace.In this paper, we propose an approach for accurate measurements of the energy consumption of mobile applications. We apply the proposed approach to assess the energy consumption of 21 mobile, closed source, applications and four open source Android applications.We show that by sampling at 10 kHz one may expect a median error of 8%, however, such error may be as high as 50% for short fast executing methods. Finally, we revisit a previous approach that estimates the energy consumption of methods based on execution time and found that it can miss as much as 84% of the energy, with a median of 30%.


2015 ◽  
Author(s):  
Rubén Saborido ◽  
Venera Venera Arnaoudova ◽  
Giovanni Beltrame ◽  
Foutse Khomh ◽  
Giuliano Antoniol

Energy consumption is a major concern when developing and evolving mobile applications. The user wishes to access fast and powerful mobile applications, which is usually in contrast to optimized battery life and heat generation. The software engineering community have acknowledged the relevance of the problem and researchers are investigating ways to reduce energy consumption, for example by examining which library, device configuration, and applications parameters should be used to promote long battery life. We conjecture that these studies are at the border between hardware and software and we must be careful on how the energy consumption is measured and how the energy consumption is attributed to methods and libraries.To the best of our knowledge, no previous work investigates how much energy and power consumption is due to high frequency events missed when sampling at low frequencies such as 10 kHz and verified the error at the precision of method level. Low frequency sampling is a rough approximation that hinders the understanding of fine grain details: the real picture of energy consumption as well as the root causes are missed. This has profound implications on the choice of methods to evolve or components to replace.In this paper, we propose an approach for accurate measurements of the energy consumption of mobile applications. We apply the proposed approach to assess the energy consumption of 21 mobile, closed source, applications and four open source Android applications.We show that by sampling at 10 kHz one may expect a median error of 8%, however, such error may be as high as 50% for short fast executing methods. Finally, we revisit a previous approach that estimates the energy consumption of methods based on execution time and found that it can miss as much as 84% of the energy, with a median of 30%.


2019 ◽  
Vol 622 ◽  
pp. A11 ◽  
Author(s):  
Gülay Gürkan ◽  
M. J. Hardcastle ◽  
P. N. Best ◽  
L. K. Morabito ◽  
I. Prandoni ◽  
...  

The radio-loud/radio-quiet (RL/RQ) dichotomy in quasars is still an open question. Although it is thought that accretion onto supermassive black holes in the centre the host galaxies of quasars is responsible for some radio continuum emission, there is still a debate as to whether star formation or active galactic nuclei (AGN) activity dominate the radio continuum luminosity. To date, radio emission in quasars has been investigated almost exclusively using high-frequency observations in which the Doppler boosting might have an important effect on the measured radio luminosity, whereas extended structures, best observed at low radio frequencies, are not affected by the Doppler enhancement. We used a sample of quasars selected by their optical spectra in conjunction with sensitive and high-resolution low-frequency radio data provided by the LOw Frequency ARray (LOFAR) as part of the LOFAR Two-Metre Sky Survey (LoTSS) to investigate their radio properties using the radio loudness parameter (R =L144 MHz/Li band). The examination of the radio continuum emission and RL/RQ dichotomy in quasars exhibits that quasars show a wide continuum of radio properties (i.e. no clear bimodality in the distribution of ℛ). Radio continuum emission at low frequencies in low-luminosity quasars is consistent with being dominated by star formation. We see a significant albeit weak dependency of ℛ on the source nuclear parameters. For the first time, we are able to resolve radio morphologies of a considerable number of quasars. All these crucial results highlight the impact of the deep and high-resolution low-frequency radio surveys that foreshadow the compelling science cases for the Square Kilometre Array (SKA).


Sign in / Sign up

Export Citation Format

Share Document