scholarly journals Design and Development of Smart Fleet System using Global Positioning System

Now a days, Vehicle tracking system plays a major role in our daily life. As the technology grows, vehicle thefts are increasing enormously. This paper proposes to design an embedded system which is used to track and position any vehicle by using Global Positioning System (GPS) and Global system for mobile communication (GSM). This helps in monitoring and reporting the status of the moving Vehicle on demand continuously. So, ATMEGA328 microcontroller is serially interfaced to a GSM Modem and GPS Receiver through serial communication protocol RS 232. In this, driver circuit is used to covert TTL voltages into RS 232 voltage levels. Identifying the position of the remote vehicle is done by GPS modem continuously. The current location details like vehicle longitudes and latitudes of the remote vehicle is sent through GSM modem. The output is acquired from GPS modem and displayed on the LCD display. The same data is transmitted to the mobile at the other end from where the position of the vehicle is demanded. Based on the request placed by the user, the position of the vehicle is automatically sent to the corresponding mobile number. So, this project has been implemented to identify lost vehicle, know the status of moving vehicle from remote location and send the information to the user's mobile number.

Author(s):  
DECY NATALIANA

ABSTRAKBerprinsip pada pengembangan teknologi dan aplikasi dari sistem penjejakan posisi (tracking), maka dibuatlah sistem personal tracking dengan mentransmisikan data GPS (Global Positioning System) dengan menggunakan teknologi SMS (Short Messaging Service) pada jaringan GSM (Global System for Mobile Communications) sebagai media transmisinya.  Dengan sistem GPS akan diperoleh data garis lintang, serta garis bujur dari GPS receiver.  Data tersebut akan diteruskan oleh mikrokontroler untuk dikirim ke ponsel pengamat melalui komunikasi SMS.  Hasil pengujian menunjukkan bahwa device personal tracking berhasil mengirimkan data berupa IMEI, Tanggal satelit, waktu satelit, koordinat longitude, koordinat latitude, dan jumlah satelit yang berhasil ditangkap oleh device ke ponsel pengamat.  Dari data koordinat tersebut pengamat dapat memantau posisi device personal tracking berada dengan bantuan aplikasi pendukung yaitu Google Maps.Kata kunci: GPS, Personal Tracking, SMS, Google Maps. ABSTRACTBase on technology and application development of tracking, personal tracking system was made by transmiting GPS (Global Positioning System) data using SMS (Short Messaging Service) technology with GSM (Global System for Mobile Communications) network as transmitter media.  BY GPS system, we can get datas such as latitude and longitude of GPS receiver.  Those datas will be processed by microcontroller to be sent from GSM/GPRS module to user cellular phone through SMS communication.  The test result showed that the device can be sending datas such as IMEI, UTC date, UTC time, longitude coordinate, latitude coordinate, and number sattelite which detected by device to user’s phonecell.  From those coordinate, user can be monitoring the device’s position with the Google Maps application.Keywords: GPS, Personal Tracking, SMS, Google Maps.


Now-a-days, we can see many fishermen were caught by other country because of border violation. This is mainly due to the reason that sea borders are unidentifiable. This application helps the fishermen to track their location at national borders. This embedded system continuously tracks the location using a GPS [Global Positioning System].The GPS aids in continuous tracking of the fishermen boat. Using GPS, we can find the current latitude and longitude values which is then sent to the Raspberry pi unit. The Raspberry pi unit finds the current location by comparing the present latitude and longitude values with the predefined value. Then from the result of the comparison, this system indicates the fishermen that they are about to reach the nautical border and helps in motor speed controlling. This system also helps the fishermen to detect the weather condition which senses and displays various parameters of surrounding weather.


Drones ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 37 ◽  
Author(s):  
Rizwan ◽  
Shehzad ◽  
Awais

Air transport is the fastest way to reach areas with no direct land routes for ambulances. This paper presents the development of a quadcopter-based rapid response unit in an efficient aerial aid system to eliminate the delay time for first aid supplies. The system comprises a health monitoring and calling system for a field person working in open areas and a base station with the quadcopter. In an uncertain situation, the quadcopter is deployed from the base station towards the field person for immediate help through the specified path using constant Global System for Mobile (GSM)- and Global Positioning System (GPS)-based connections. The entire operation can be monitored at the base station with a Virtual Reality (VR) head-tracking system supported by a smartphone. The camera installed on the quadcopter is synchronized with the operator’s head movement while wearing a VR head-tracking system at the base station. Moreover, an Infrared (IR)-based obstacle-evasion model is implemented separately to explain the working of the autonomous collision-avoidance system. The system was tested, which confirmed the reduction in the response time to supply aid to the desired locations.


2013 ◽  
Vol 6 (1) ◽  
pp. 767-793
Author(s):  
A. Barreto ◽  
E. Cuevas ◽  
B. Damiri ◽  
P. M. Romero ◽  
F. Almansa

Abstract. In this paper we present the preliminary results of atmospheric column integrated water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August, 2011. We have compared nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley Method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92. Comparison of daytime PWV from CA shows differences against GPS and RS92 up to 0.18 cm. Two different filters, with and approximate bandwidth of 10 nm and central wavelengths at 938 nm (Filter#1) and 937 nm (Filter#2), were mounted into the LC. Filter#1 is currently used in operational AERONET sunphotometers. PWV obtained with LC-Filter#1 showed an overestimation above 0.18 and 0.25 cm compared to GPS and RS92, respectively, meanwhile Filter#2, with a reduced out-of-band radiation, showed very low differences compared with the same references (≤0.03 cm). These results demonstrate the ability of the new lunar photometer to obtain accurate and continuous PWV measurements at night in addition to the notably influence of the filter's transmissivity response on PWV determination at nighttime. The use of enhanced bandpass filters in lunar photometry, which is affected by more important inaccuracies than sun-photometry, is necessary to infer PWV with similar precision than AERONET.


2009 ◽  
Vol 20 (7) ◽  
pp. 075105 ◽  
Author(s):  
Ta-Kang Yeh ◽  
Cheinway Hwang ◽  
Guochang Xu ◽  
Chuan-Sheng Wang ◽  
Chien-Chih Lee

Author(s):  
P.J. Zabinski ◽  
B.K. Gilbert ◽  
P.J. Zucarelli ◽  
D.V. Weninger ◽  
T.W. Keller

Recently, indoor localization has witnessed an increase in interest, due to the potential wide range of using in different applications, such as Internet of Things (IoT). It is also providing a solution for the absence of Global Positioning System (GPS) signals inside buildings. Different techniques have been used for performing the indoor localization, such as sensors and wireless technologies. In this paper, an indoor localization and object tracking system is proposed based on WiFi transmission technique. It is done by distributing different WiFi sources around the building to read the data of the tracked objects. This is to measure the distance between the WiFi receiver and the object to allocate and track it efficiently. The test results show that the proposed system is working in an efficient way with low cost.


Sign in / Sign up

Export Citation Format

Share Document