scholarly journals Future Prediction of Diabetics using XG Booster Classifiers

Diabetes is a most common disease that occurs to most of the humans now a day. The predictions for this disease are proposed through machine learning techniques. Through this method the risk factors of this disease are identified and can be prevented from increasing. Early prediction in such disease can be controlled and save human’s life. For the early predictions of this disease we collect data set having 8 attributes diabetic of 200 patients. The patients’ sugar level in the body is tested by the features of patient’s glucose content in the body and according to the age. The main Machine learning algorithms are Support vector machine (SVM), naive bayes (NB), K nearest neighbor (KNN) and Decision Tree (DT). In the exiting the Naive Bayes the accuracy levels are 66% but in the Decision tree the accuracy levels are 70 to 71%. The accuracy levels of the patients are not proper in range. But in XG boost classifiers even after the Naïve Bayes 74 Percentage and in Decision tree the accuracy levels are 89 to 90%. In the proposed system the accuracy ranges are shown properly and this is only used mostly. A dataset of 729 patients can be stored in Mongo DB and in that 129 patients repots are taken for the prediction purpose and the remaining are used for training. The training datasets are used for the prediction purposes.

2020 ◽  
Vol 19 ◽  
pp. 153303382090982
Author(s):  
Melek Akcay ◽  
Durmus Etiz ◽  
Ozer Celik ◽  
Alaattin Ozen

Background and Aim: Although the prognosis of nasopharyngeal cancer largely depends on a classification based on the tumor-lymph node metastasis staging system, patients at the same stage may have different clinical outcomes. This study aimed to evaluate the survival prognosis of nasopharyngeal cancer using machine learning. Settings and Design: Original, retrospective. Materials and Methods: A total of 72 patients with a diagnosis of nasopharyngeal cancer who received radiotherapy ± chemotherapy were included in the study. The contribution of patient, tumor, and treatment characteristics to the survival prognosis was evaluated by machine learning using the following techniques: logistic regression, artificial neural network, XGBoost, support-vector clustering, random forest, and Gaussian Naive Bayes. Results: In the analysis of the data set, correlation analysis, and binary logistic regression analyses were applied. Of the 18 independent variables, 10 were found to be effective in predicting nasopharyngeal cancer-related mortality: age, weight loss, initial neutrophil/lymphocyte ratio, initial lactate dehydrogenase, initial hemoglobin, radiotherapy duration, tumor diameter, number of concurrent chemotherapy cycles, and T and N stages. Gaussian Naive Bayes was determined as the best algorithm to evaluate the prognosis of machine learning techniques (accuracy rate: 88%, area under the curve score: 0.91, confidence interval: 0.68-1, sensitivity: 75%, specificity: 100%). Conclusion: Many factors affect prognosis in cancer, and machine learning algorithms can be used to determine which factors have a greater effect on survival prognosis, which then allows further research into these factors. In the current study, Gaussian Naive Bayes was identified as the best algorithm for the evaluation of prognosis of nasopharyngeal cancer.


Author(s):  
Nursyahirah Tarmizi ◽  
Suhaila Saee ◽  
Dayang Hanani Abang Ibrahim

<span>This paper presents the task of Author Identification for KadazanDusun language by using tweets as the source of data to perform Author Identification task of short text on KadazanDusun, which is considered as one the under-resourced language in Malaysia. The aim of this paper is to demonstrate Author Identification of short text on KadazanDusun. Besides, this paper also examines the performance of two machine learning algorithms on the KadazanDusun data set by analyzing the stylometric features. Stylometric features are used to quantify the writing styles of the authors which includes character n-grams and word n-grams. The workflow of Author Identification implements the machine learning approach to solve the single-labelled multi-class problem and predict the author of a given message in KadazanDusun. Two classifiers are used to compare the accuracy including Naïve Bayes and Support Vector Machine (SVM). The results show that the combination of n-grams which is word-level unigram and {1-5}-grams with character 3-grams are the most relevant stylometric features in identifying the author of KadazanDusun message with an accuracy of 80.17%. The results also show that SVM classifier has outperformed Naive Bayes in this Author Identification task with the accuracy of 80.17%.</span>


The scope of this research work is to identify the efficient machine learning algorithm for predicting the behavior of a student from the student performance dataset. We applied Support Vector Machines, K-Nearest Neighbor, Decision Tree and Naïve Bayes algorithms to predict the grade of a student and compared their prediction results in terms of various performance metrics. The students who visited many resources for reference, made academic related discussions and interactions in the class room, absent for minimum days, cared by parents care have shown great improvement in the final grade. Among the machine learning techniques we have used, SVM has shown more accuracy in terms of four important attribute. The accuracy rate of SVM after tuning is 0.80. The KNN and decision tree achieves the accuracy of 0.64, 0.65 respectively whereas the Naïve Bayes achieves 0.77.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


Author(s):  
Muskan Patidar

Abstract: Social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. Cyberbullying refers to the use of technology to humiliate and slander other people. It takes form of hate messages sent through social media and emails. With the exponential increase of social media users, cyberbullying has been emerged as a form of bullying through electronic messages. We have tried to propose a possible solution for the above problem, our project aims to detect cyberbullying in tweets using ML Classification algorithms like Naïve Bayes, KNN, Decision Tree, Random Forest, Support Vector etc. and also we will apply the NLTK (Natural language toolkit) which consist of bigram, trigram, n-gram and unigram on Naïve Bayes to check its accuracy. Finally, we will compare the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection. Keywords: Cyber bullying, Machine Learning Algorithms, Twitter, Natural Language Toolkit


Information ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 383
Author(s):  
Francis Effirim Botchey ◽  
Zhen Qin ◽  
Kwesi Hughes-Lartey

The onset of COVID-19 has re-emphasized the importance of FinTech especially in developing countries as the major powers of the world are already enjoying the advantages that come with the adoption of FinTech. Handling of physical cash has been established as a means of transmitting the novel corona virus. Again, research has established that, been unbanked raises the potential of sinking one into abject poverty. Over the years, developing countries have been piloting the various forms of FinTech, but the very one that has come to stay is the Mobile Money Transactions (MMT). As mobile money transactions attempt to gain a foothold, it faces several problems, the most important of them is mobile money fraud. This paper seeks to provide a solution to this problem by looking at machine learning algorithms based on support vector machines (kernel-based), gradient boosted decision tree (tree-based) and Naïve Bayes (probabilistic based) algorithms, taking into consideration the imbalanced nature of the dataset. Our experiments showed that the use of gradient boosted decision tree holds a great potential in combating the problem of mobile money fraud as it was able to produce near perfect results.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Mahmood Umar ◽  
Nor Bahiah Ahmad ◽  
Anazida Zainal

This study investigates the performance of machine learning algorithms for sentiment analysis of students’ opinions on programming assessment. Previous researches show that Support Vector Machines (SVM) performs the best among all techniques, followed by Naïve Bayes (NB) in sentiment analysis. This study proposes a framework for classifying sentiments, as positive or negative using NB algorithm and Lexicon-based approach on small data set. The performance of NB algorithm was evaluated using SVM. NB and SVM conquer the Lexicon-based approach opinion lexicon technique in terms of accuracy in the specific area for which it is trained. The Lexicon-based technique, on the other hand, avoids difficult steps needed to train the classifier. Data was analyzed from 75 first year undergraduate students in School of Computing, Universiti Teknologi Malaysia taking programming subject. The student’s sentiments were gathered based on their opinions for the zero-score policy for unsuccessful compilation of program during skill-based test. The result of the study reveals that the students tend to have negative sentiments on programming assessment as it gives them scary emotions. The experimental result of applying NB algorithm yields a prediction accuracy of 85% which outperform both the SVM with 70% and Lexicon-based approach with 60% accuracy. The result shows that NB works better than SVM and Lexicon-based approach on small dataset. 


Author(s):  
Ahmed T. Shawky ◽  
Ismail M. Hagag

In today’s world using data mining and classification is considered to be one of the most important techniques, as today’s world is full of data that is generated by various sources. However, extracting useful knowledge out of this data is the real challenge, and this paper conquers this challenge by using machine learning algorithms to use data for classifiers to draw meaningful results. The aim of this research paper is to design a model to detect diabetes in patients with high accuracy. Therefore, this research paper using five different algorithms for different machine learning classification includes, Decision Tree, Support Vector Machine (SVM), Random Forest, Naive Bayes, and K- Nearest Neighbor (K-NN), the purpose of this approach is to predict diabetes at an early stage. Finally, we have compared the performance of these algorithms, concluding that K-NN algorithm is a better accuracy (81.16%), followed by the Naive Bayes algorithm (76.06%).


Machine learning is one of the fast growing aspect in current world. Machine learning (ML) and Artificial Neural Network (ANN) are helpful in detection and diagnosis of various heart diseases. Naïve Bayes Classification is a vital approach of classification in machine learning. The heart disease consists of set of range disorders affecting the heart. It includes blood vessel problems such as irregular heart beat issues, weak heart muscles, congenital heart defects, cardio vascular disease and coronary artery disease. Coronary heart disorder is a familiar type of heart disease. It reduces the blood flow to the heart leading to a heart attack. In this paper the UCI machine learning repository data set consisting of patients suffering from heart disease is analyzed using Naïve Bayes classification and support vector machines. The classification accuracy of the patients suffering from heart disease is predicted using Naïve Bayes classification and support vector machines. Implementation is done using R language.


2021 ◽  
Author(s):  
Floe Foxon

Ammonoid identification is crucial to biostratigraphy, systematic palaeontology, and evolutionary biology, but may prove difficult when shell features and sutures are poorly preserved. This necessitates novel approaches to ammonoid taxonomy. This study aimed to taxonomize ammonoids by their conch geometry using supervised and unsupervised machine learning algorithms. Ammonoid measurement data (conch diameter, whorl height, whorl width, and umbilical width) were taken from the Paleobiology Database (PBDB). 11 species with ≥50 specimens each were identified providing N=781 total unique specimens. Naive Bayes, Decision Tree, Random Forest, Gradient Boosting, K-Nearest Neighbours, and Support Vector Machine classifiers were applied to the PBDB data with a 5x5 nested cross-validation approach to obtain unbiased generalization performance estimates across a grid search of algorithm parameters. All supervised classifiers achieved ≥70% accuracy in identifying ammonoid species, with Naive Bayes demonstrating the least over-fitting. The unsupervised clustering algorithms K-Means, DBSCAN, OPTICS, Mean Shift, and Affinity Propagation achieved Normalized Mutual Information scores of ≥0.6, with the centroid-based methods having most success. This presents a reasonably-accurate proof-of-concept approach to ammonoid classification which may assist identification in cases where more traditional methods are not feasible.


Sign in / Sign up

Export Citation Format

Share Document