scholarly journals Clinical Perspective on Internet of Things Applications for Care of the Elderly

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1925
Author(s):  
Soe Ye Yint Tun ◽  
Samaneh Madanian ◽  
Dave Parry

The elderly population is increasing globally, putting more pressure on aged care and public health systems. To address this issue and help increase the independence of older people, different digital technologies, including the Internet of things (IoT), can play an important role. Although there has been an increase in the number of studies in this field, most of them concentrate on IoT applications in elderly care from a technology perspective, with very little contribution from the clinical side. Therefore, this paper aims to investigate and identify the available IoT applications and their clinical utility for common diseases in elderly people. The results of this study could be useful for information technology professionals in developing and understanding the clinical requirements for IoT applications in healthcare for older people. Clinicians will also be informed about the clinical possibilities of using IoT devices in this area. Based on our findings, future research should focus on enhancing the clinical utility of current IoT applications in different settings and on developing new applications to support practitioners and older people.

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zeeshan Ali Khan ◽  
Peter Herrmann

Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions. Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS) which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks. Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that could be useful to make IoT networks more secure.


2018 ◽  
Vol 2 (2) ◽  
pp. 10 ◽  
Author(s):  
Hany Atlam ◽  
Robert Walters ◽  
Gary Wills

With the rapid growth of Internet of Things (IoT) applications, the classic centralized cloud computing paradigm faces several challenges such as high latency, low capacity and network failure. To address these challenges, fog computing brings the cloud closer to IoT devices. The fog provides IoT data processing and storage locally at IoT devices instead of sending them to the cloud. In contrast to the cloud, the fog provides services with faster response and greater quality. Therefore, fog computing may be considered the best choice to enable the IoT to provide efficient and secure services for many IoT users. This paper presents the state-of-the-art of fog computing and its integration with the IoT by highlighting the benefits and implementation challenges. This review will also focus on the architecture of the fog and emerging IoT applications that will be improved by using the fog model. Finally, open issues and future research directions regarding fog computing and the IoT are discussed.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3459
Author(s):  
Yuhong Li ◽  
Xiang Su ◽  
Aaron Yi Ding ◽  
Anders Lindgren ◽  
Xiaoli Liu ◽  
...  

The Internet of Things (IoT) connects smart devices to enable various intelligent services. The deployment of IoT encounters several challenges, such as difficulties in controlling and managing IoT applications and networks, problems in programming existing IoT devices, long service provisioning time, underused resources, as well as complexity, isolation and scalability, among others. One fundamental concern is that current IoT networks lack flexibility and intelligence. A network-wide flexible control and management are missing in IoT networks. In addition, huge numbers of devices and large amounts of data are involved in IoT, but none of them have been tuned for supporting network management and control. In this paper, we argue that Software-defined Networking (SDN) together with the data generated by IoT applications can enhance the control and management of IoT in terms of flexibility and intelligence. We present a review for the evolution of SDN and IoT and analyze the benefits and challenges brought by the integration of SDN and IoT with the help of IoT data. We discuss the perspectives of knowledge-driven SDN for IoT through a new IoT architecture and illustrate how to realize Industry IoT by using the architecture. We also highlight the challenges and future research works toward realizing IoT with the knowledge-driven SDN.


BMC Nursing ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Cheng ◽  
Jiong Tu ◽  
Xiaoyan Shen

Abstract Background With China’s population ageing rapidly, stroke is becoming one of the major public health problems. Nurses are indispensable for caring for older patients with acute and convalescent stroke, and their working experiences are directly linked to the quality of care provided. The study aims to investigate registered nurses’ experiences of caring for older stroke patients. Methods A qualitative descriptive design was adopted. Data were collected via semi-structured interviews with 26 registered nurses about their lived experiences of caring for older stroke patients. Thematic analysis was used to analyze the data. Results Two main themes were identified. First, the nurses identified an obvious gap between their ideal role in elderly care and their actual practice. The unsatisfactory reality was linked to the practical difficulties they encountered in their working environment. Second, the nurses expressed conflicting feelings about caring for older stroke patients, displaying a sense of accomplishment, indifference, annoyance, and sympathy. Caring for older stroke patients also affects nurses psychologically and physically. The nurses were clear about their own roles and tried their best to meet the elderly people’s needs, yet they lack time and knowledge about caring for older stroke patients. The factors influencing their working experiences extend beyond the personal domain and are linked to the wider working environment. Conclusions Sustaining the nursing workforce and improving their working experiences are essential to meet the care needs of older people. Understanding nurses’ lived working experiences is the first step. At the individual level, nurse mangers should promote empathy, relieve anxiety about aging, and improve the job satisfaction and morale of nurses. At the institutional level, policymakers should make efforts to improve the nursing clinical practice environment, increase the geriatric nursing education and training, achieve a proper skill mix of the health workforce, and overall attract, prepare and sustain nurses regarding caring for older people in a rapidly aging society.


Internet of Things(IoT) is playing a pivotal role in our daily life as well as in various fields like Health, agriculture, industries etc. In the go, the data in the various IoT applications will be easily available to the physical dominion and thus the process of ensuringthe security of the data will be a major concern. For the extensive implementation of the numerous applications of IoT , the data security is a critical component. In our work, we have developed an encryption technique to secure the data of IoT. With the help of Merkle-Hellman encryption the data collected from the various IoT devices are first of all encrypted and then the secret message is generated with the help of Elliptic Curve Cryptography.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6846
Author(s):  
Ngoc-Thanh Dinh ◽  
Young-Han Kim

Existing caching mechanisms considers content objects individually without considering the semantic correlation among content objects. We argue that this approach can be inefficient in Internet of Things due to the highly redundant nature of IoT device deployments and the data accuracy tolerance of IoT applications. In many IoT applications, an approximate answer is acceptable. Therefore, a cache of an information object having a high semantic correlation with the requested information object can be used instead of a cache of the exact requested information object. In this case, caching both of the information objects can be inefficient and redundant. This paper proposes a caching retrieval scheme which considers the semantic information correlation of information objects of nodes for cache retrieval. We illustrate the benefits of considering the semantic information correlation in caching by studying IoT data caching at the edge. Our experiments and analysis show that semantic correlated caching can significantly improve the efficiency, cache hit, and reduce the resource consumption of IoT devices.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 972 ◽  
Author(s):  
Yasin Kabalci ◽  
Ersan Kabalci ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen ◽  
Frede Blaabjerg

Energy Internet (EI) has been recently introduced as a new concept, which aims to evolve smart grids by integrating several energy forms into an extremely flexible and effective grid. In this paper, we have comprehensively analyzed Internet of Things (IoT) applications enabled for smart grids and smart environments, such as smart cities, smart homes, smart metering, and energy management infrastructures to investigate the development of the EI based IoT applications. These applications are promising key areas of the EI concept, since the IoT is considered one of the most important driving factors of the EI. Moreover, we discussed the challenges, open issues, and future research opportunities for the EI concept based on IoT applications and addressed some important research areas.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


2018 ◽  
Vol 38 (1) ◽  
pp. 121-129 ◽  
Author(s):  
Pablo Antonio Pico Valencia ◽  
Juan A. Holgado-Terriza ◽  
Deiver Herrera-Sánchez ◽  
José Luis Sampietro

Recently, the scientific community has demonstrated a special interest in the process related to the integration of the agent-oriented technology with Internet of Things (IoT) platforms. Then, it arises a novel approach named Internet of Agents (IoA) as an alternative to add an intelligence and autonomy component for IoT devices and networks. This paper presents an analysis of the main benefits derived from the use of the IoA approach, based on a practical point of view regarding the necessities that humans demand in their daily life and work, which can be solved by IoT networks modeled as IoA infrastructures. It has been presented 24 study cases of the IoA approach at different domains ––smart industry, smart city and smart health wellbeing–– in order to define the scope of these proposals in terms of intelligence and autonomy in contrast to their corresponding generic IoT applications.


Sign in / Sign up

Export Citation Format

Share Document