scholarly journals An Effective Method for Predicting Malware Family

Today, many of devices are connected to internet through networks. Malware (such as computer viruses, trojans, ransomware, and bots) has becoming a critical concern and evolving security threats to the internet users nowadays. To make legitimate users safe from these attacks, many anti-malware software products has been developed. Which provide the major defensive methods against those malwares. Due to rapid spread and easiness of generating malicious code, the number of new malware samples has dramatically increased. There need to take an immediate action against these increase in malware samples which would result in an intelligent method for malware detection. Machine learning approaches are one of the efficient choices to deal with the problem which helps to distinguish malware from benign ones. In this paper we are considering xception model for malware detection. This experiment results shows the efficiency of our proposed method, which gives 98% accuracy with malimg dataset. This paper helps network security area for their efficient works.

IJOSTHE ◽  
2019 ◽  
Vol 3 (5) ◽  
pp. 5
Author(s):  
Aayushi Priya ◽  
Kajol Singh ◽  
Rajeev Tiwari

In the Internet age, malware (such as viruses, trojans, ransomware, and bots) has posed serious andevolving security threats to Internet users. To protect legitimate users from these threats, anti-malware softwareproducts from different companies, including Comodo, Kaspersky, Kingsoft, and Symantec, provide the majordefense against malware. Unfortunately, driven by the economic benefits, the number of new malware sampleshas explosively increased: anti-malware vendors are now confronted with millions of potential malware samplesper year. In order to keep on combating the increase in malware samples, there is an urgent need to developintelligent methods for effective and efficient malware detection from the real and large daily sample collection.One of the most common approaches in literature is using machine learning techniques, to automatically learnmodels and patterns behind such complexity, and to develop technologies to keep pace with malware evolution.This survey aims at providing an overview on the way machine learning has been used so far in the context ofmalware analysis in Windows environments. This paper gives an survey on the features related to malware filesor documents and what machine learning techniques they employ (i.e., what algorithm is used to process the inputand produce the output). Different issues and challenges are also discussed.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 28
Author(s):  
Hossein Sayadi ◽  
Yifeng Gao ◽  
Hosein Mohammadi Makrani ◽  
Jessica Lin ◽  
Paulo Cesar Costa ◽  
...  

According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively.


Author(s):  
Selvarathi C, Et. al.

Malware is one of the predominant challenges for the Internet users. In recent times, the injection of malwares into machines by anonymous hackers have been increased. This drives us to an urgent need of a system that detects a malware. Our idea is to build a system that learns with the previously collected data related to malwares and detects a malware in the give file, if it is present. We propose a various machine learning algorithm to detect a malware and indicates the user about the danger. In particular we propose to use a algorithm which give a optimal solution to hardware and software oriented malwares.


2020 ◽  
Vol 3 (2) ◽  
pp. 196-206
Author(s):  
Mausumi Das Nath ◽  
◽  
Tapalina Bhattasali

Due to the enormous usage of the Internet, users share resources and exchange voluminous amounts of data. This increases the high risk of data theft and other types of attacks. Network security plays a vital role in protecting the electronic exchange of data and attempts to avoid disruption concerning finances or disrupted services due to the unknown proliferations in the network. Many Intrusion Detection Systems (IDS) are commonly used to detect such unknown attacks and unauthorized access in a network. Many approaches have been put forward by the researchers which showed satisfactory results in intrusion detection systems significantly which ranged from various traditional approaches to Artificial Intelligence (AI) based approaches.AI based techniques have gained an edge over other statistical techniques in the research community due to its enormous benefits. Procedures can be designed to display behavior learned from previous experiences. Machine learning algorithms are used to analyze the abnormal instances in a particular network. Supervised learning is essential in terms of training and analyzing the abnormal behavior in a network. In this paper, we propose a model of Naïve Bayes and SVM (Support Vector Machine) to detect anomalies and an ensemble approach to solve the weaknesses and to remove the poor detection results


As a wrongdoing of utilizing specialized intends to take sensitive data of clients and users in the internet, phishing is as of now an advanced risk confronting the Internet, and misfortunes due to phishing are developing consistently. Recognition of these phishing scams is a very testing issue on the grounds that phishing is predominantly a semantics based assault, which particularly manhandles human vulnerabilities, anyway not system or framework vulnerabilities. Phishing costs. As a product discovery plot, two primary methodologies are generally utilized: blacklists/whitelists and machine learning approaches. Every phishing technique has different parameters and type of attack. Using decision tree algorithm we find out whether the attack is legitimate or a scam. We measure this by grouping them with diverse parameters and features, thereby assisting the machine learning algorithm to edify.


Android OS, which is the most prevalent operating system (OS), has enjoyed immense popularity for smart phones over the past few years. Seizing this opportunity, cybercrime will occur in the form of piracy and malware. Traditional detection does not suffice to combat newly created advanced malware. So, there is a need for smart malware detection systems to reduce malicious activities risk. Machine learning approaches have been showing promising results in classifying malware where most of the method are shallow learners like Random Forest (RF) in recent years. In this paper, we propose Deep-Droid as a deep learning framework, for detection Android malware. Hence, our Deep-Droid model is a deep learner that outperforms exiting cutting-edge machine learning approaches. All experiments performed on two datasets (Drebin-215 & Malgenome-215) to assess our Deep-Droid model. The results of experiments show the effectiveness and robustness of Deep-Droid. Our Deep-Droid model achieved accuracy over 98.5%.


2020 ◽  
Vol 9 (1) ◽  
pp. 1894-1899 ◽  

The number of internet users has increased exponentially over the years and so have increased intrusive activities significantly. To detect an intrusion attack in a system connected over a network is one of the most challenging tasks in today’s world. A significant number of techniques have been developed which are based on machine learning approaches to detect these intrusion attacks. Even though these techniques are good, they are not good enough to detect all kinds of attacks. In this paper, the analysis of different machine learning algorithm will be performed on the NSL-KDD dataset with pre-processing steps like One-hot encoding, feature selection and random sampling to use in different machine learning models to find the best performing model to detect these attacks. The attacks are from the datasets are classified into four types of attacks: Probe, DoS, U2R, R2L while the non- attack is the Normal. The dataset is in two parts: KDD-Train and KDD-Test. The dataset is trained and tested to find accuracy and understand the performance of different machine learning algorithms and compare them. The Machine Learning algorithms used are Naive Bayes Classifier, Decision Tree Classifier, Random Forest Classifier, KNeighbours Classifier, Logistic Regression, SVM Classifier, Voting Classifier. These techniques are compared according to their capability to detect the attacks. This comparison will help to find the algorithm which would work the best to detect different kinds of intrusion attacks.


TEKNOKOM ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 16-20
Author(s):  
Andrie Yuswanto ◽  
Budi Wibowo

A very significant increase in the spread of malware has resulted in malware analysis. A recent approach to using the internet of things has been put forward by many researchers. Iot tool learning approaches as a more effective and efficient approach to dealing with malware compared to conventional approaches. At the same time, the researchers transformed the honeypot as a device capable of gathering malware information. The honeypot is designed as a malware trap and is stored on the provided system. Then log the managed events and gather information about the activity and identity of the attacker. This paper aims to use a honeypot in machine learning to deal with malware The Systematic Literature Review (SLR) method was used to identify 207. Then 10 papers were selected to be investigated based on inclusion and exclusion criteria. . The technique used by most researchers is to utilize the available honeypot dataset. Meanwhile, based on the type of malware being analyzed, honeypot in machine learning is mostly used to collect IoT-based malware.


Sign in / Sign up

Export Citation Format

Share Document