scholarly journals IOT and Data Research In Industrial Power Management

IOT plays an important role in collecting data and machine learning for prediction in variety of applications like homecare, healthcare and energy management. In energy management there are various variables such as future power demands, generation status weather conditions and current battery status hard to expect high efficiency. Here, in this proposed idea, for higher efficiency of renewable energy, an IOT system is needed to monitor and collect these Statuses and provide energy management services. Energy will be consumed of passive operation according to hourly variation in price and battery status will be predicted by using machine learning algorithms like Logistic regression, SVM, and k-NN. We trained the system by considering five random variables in datasheet such as Current time, Current cost, predicted time, predicted cost and Solar battery status from the device. This integrated system is used for uploading power related details of Grid and Solar to IBM cloud. Depending on previous datasheet, analytics will be done by resulting which source has to be triggered to drive the load either Solar or Grid. APIs and NodeRed Tool were used for wiring sensor data and Model predicted output. In future power demands, this design will help to predict the price according to hourly variation based on the units and to trigger the source

2021 ◽  
Vol 13 (13) ◽  
pp. 2433
Author(s):  
Shu Yang ◽  
Fengchao Peng ◽  
Sibylle von Löwis ◽  
Guðrún Nína Petersen ◽  
David Christian Finger

Doppler lidars are used worldwide for wind monitoring and recently also for the detection of aerosols. Automatic algorithms that classify the lidar signals retrieved from lidar measurements are very useful for the users. In this study, we explore the value of machine learning to classify backscattered signals from Doppler lidars using data from Iceland. We combined supervised and unsupervised machine learning algorithms with conventional lidar data processing methods and trained two models to filter noise signals and classify Doppler lidar observations into different classes, including clouds, aerosols and rain. The results reveal a high accuracy for noise identification and aerosols and clouds classification. However, precipitation detection is underestimated. The method was tested on data sets from two instruments during different weather conditions, including three dust storms during the summer of 2019. Our results reveal that this method can provide an efficient, accurate and real-time classification of lidar measurements. Accordingly, we conclude that machine learning can open new opportunities for lidar data end-users, such as aviation safety operators, to monitor dust in the vicinity of airports.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4846
Author(s):  
Dušan Marković ◽  
Dejan Vujičić ◽  
Snežana Tanasković ◽  
Borislav Đorđević ◽  
Siniša Ranđić ◽  
...  

The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


Author(s):  
G. S. Karthick ◽  
P. B. Pankajavalli

The rapid innovations in technologies endorsed the emergence of sensory equipment's connection to the Internet for acquiring data from the environment. The increased number of devices generates the enormous amount of sensor data from diversified applications of Internet of things (IoT). The generation of data may be a fast or real-time data stream which depends on the nature of applications. Applying analytics and intelligent processing over the data streams discovers the useful information and predicts the insights. Decision-making is a prominent process which makes the IoT paradigm qualified. This chapter provides an overview of architecting IoT-based healthcare systems with different machine learning algorithms. This chapter elaborates the smart data characteristics and design considerations for efficient adoption of machine learning algorithms into IoT applications. In addition, various existing and hybrid classification algorithms are applied to sensory data for identifying falls from other daily activities.


Author(s):  
Peyakunta Bhargavi ◽  
Singaraju Jyothi

The moment we live in today demands the convergence of the cloud computing, fog computing, machine learning, and IoT to explore new technological solutions. Fog computing is an emerging architecture intended for alleviating the network burdens at the cloud and the core network by moving resource-intensive functionalities such as computation, communication, storage, and analytics closer to the end users. Machine learning is a subfield of computer science and is a type of artificial intelligence (AI) that provides machines with the ability to learn without explicit programming. IoT has the ability to make decisions and take actions autonomously based on algorithmic sensing to acquire sensor data. These embedded capabilities will range across the entire spectrum of algorithmic approaches that is associated with machine learning. Here the authors explore how machine learning methods have been used to deploy the object detection, text detection in an image, and incorporated for better fulfillment of requirements in fog computing.


2008 ◽  
Vol 47 (01) ◽  
pp. 70-75 ◽  
Author(s):  
V. Jakkula ◽  
D. J. Cook

Summary Objectives: To many people, home is a sanctuary. With the maturing of smart home technologies, many people with cognitive and physical disabilities can lead independent lives in their own homes for extended periods of time. In this paper, we investigate the design of machine learning algorithms that support this goal. We hypothesize that machine learning algorithms can be designed to automatically learn models of resident behavior in a smart home, and that the results can be used to perform automated health monitoring and to detect anomalies. Methods: Specifically, our algorithms draw upon the temporal nature of sensor data collected in a smart home to build a model of expected activities and to detect unexpected, and possibly health-critical, events in the home. Results: We validate our algorithms using synthetic data and real activity data collected from volunteers in an automated smart environment. Conclusions: The results from our experiments support our hypothesis that a model can be learned from observed smart home data and used to report anomalies, as they occur, in a smart home.


2018 ◽  
Vol 8 (8) ◽  
pp. 1280 ◽  
Author(s):  
Yong Kim ◽  
Youngdoo Son ◽  
Wonjoon Kim ◽  
Byungki Jin ◽  
Myung Yun

Sitting on a chair in an awkward posture or sitting for a long period of time is a risk factor for musculoskeletal disorders. A postural habit that has been formed cannot be changed easily. It is important to form a proper postural habit from childhood as the lumbar disease during childhood caused by their improper posture is most likely to recur. Thus, there is a need for a monitoring system that classifies children’s sitting postures. The purpose of this paper is to develop a system for classifying sitting postures for children using machine learning algorithms. The convolutional neural network (CNN) algorithm was used in addition to the conventional algorithms: Naïve Bayes classifier (NB), decision tree (DT), neural network (NN), multinomial logistic regression (MLR), and support vector machine (SVM). To collect data for classifying sitting postures, a sensing cushion was developed by mounting a pressure sensor mat (8 × 8) inside children’s chair seat cushion. Ten children participated, and sensor data was collected by taking a static posture for the five prescribed postures. The accuracy of CNN was found to be the highest as compared with those of the other algorithms. It is expected that the comprehensive posture monitoring system would be established through future research on enhancing the classification algorithm and providing an effective feedback system.


Sign in / Sign up

Export Citation Format

Share Document