scholarly journals Transient Stability Assessment by Coordinated Control of SVC and TCSC with Particle Swarm Optimization

This paper aims on improving the stability of a 9 bus power system under fault condition using coordination of FACTS device. Flexible A.C. transmission system (FACTS) can be regulated reliable with faster output and can improve local power grid status with control with appropriate control strategies in very small time period. Based on that, a particle swarm optimization (PSO) algorithm was executed, to design the coordinated parameter of static VAR compensator (SVC) and Thyristor Controlled Series Capacitor (TCSC). Simulation is performed on WSCC 9-bus system in MATLAB software. When 3 phase fault is applied near to generator, frequency and rotor angle changes accordingly. With coordinated control of FACTS devices with PSO has implemented both, near to its normal condition. PSO performed in this paper was structured on identifying the values of L and C of SVC and TCSC, for superior coordination.

Author(s):  
Rashid H. AL-Rubayi ◽  
Luay G. Ibrahim

<span>During the last few decades, electrical power demand enlarged significantly whereas power production and transmission expansions have been brutally restricted because of restricted resources as well as ecological constraints. Consequently, many transmission lines have been profoundly loading, so the stability of power system became a Limiting factor for transferring electrical power. Therefore, maintaining a secure and stable operation of electric power networks is deemed an important and challenging issue. Transient stability of a power system has been gained considerable attention from researchers due to its importance. The FACTs devices that provide opportunities to control the power and damping oscillations are used. Therefore, this paper sheds light on the modified particle swarm optimization (M-PSO) algorithm is used such in the paper to discover the design optimal the Proportional Integral controller (PI-C) parameters that improve the stability the Multi-Machine Power System (MMPS) with Unified Power Flow Controller (UPFC). Performance the power system under event of fault is investigating by utilizes the proposed two strategies to simulate the operational characteristics of power system by the UPFC using: first, the conventional (PI-C) based on Particle Swarm Optimization (PI-C-PSO); secondly, (PI-C) based on modified Particle Swarm Optimization (PI-C-M-PSO) algorithm. The simulation results show the behavior of power system with and without UPFC, that the proposed (PI-C-M-PSO) technicality has enhanced response the system compared for other techniques, that since it gives undershoot and over-shoot previously existence minimized in the transitions, it has a ripple lower. Matlab package has been employed to implement this study. The simulation results show that the transient stability of the respective system enhanced considerably with this technique.</span>


10.5772/45692 ◽  
2011 ◽  
Vol 8 (5) ◽  
pp. 57 ◽  
Author(s):  
Haifa Mehdi ◽  
Olfa Boubaker

This paper presents an efficient and fast method for fine tuning the controller parameters of robot manipulators in constrained motion. The stability of the robotic system is proved using a Lyapunov-based impedance approach whereas the optimal design of the controller parameters are tuned, in offline, by a Particle Swarm Optimization (PSO) algorithm. For designing the PSO method, different index performances are considered in both joint and Cartesian spaces. A 3DOF manipulator constrained to a circular trajectory is finally used to validate the performances of the proposed approach. The simulation results show the stability and the performances of the proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bowen Liu ◽  
Zhenwei Wang ◽  
Xiaoyong Zhong

With the continuous popularization and development of highway traffic in mountainous areas, the number of rock slopes is also increasing. In order to improve the stability of rock slope and reduce the harm caused by slope slip, this paper carries out numerical simulation of rock slope sliding based on particle swarm optimization algorithm. Firstly, this paper combines the differential evolution algorithm and simplex method to improve the global and local search ability of particle swarm optimization (PSO) algorithm and analyzes the performance of the algorithm. ABAQUS software is used to simulate rock slope sliding, the finite element method is used to analyze the stability of rock slope, and LS-DYNA program is used to simulate rockfall impact rock slope. During the numerical simulation, the improved algorithm is used to analyze all the data. Experimental data show that the improved PSO algorithm converges after nearly 100 iterations and the convergence speed and optimization accuracy are high. In the numerical simulation, the average failure probability of the left and right sides of the main section at the top, middle, and foot of the slope is 0.0820 and 0.0723, 0.0772 and 0.0492, and 0.0837 and 0.0677, respectively, indicating that the overall instability probability of the left side of the rock slope is higher than that of the right side. The rock slope with the same direction through joint is mainly affected by the joint at the toe of the slope, the rock slope with reverse through joint is mainly affected by the joint in the slope, and the sliding occurs from the middle to both ends. In addition, with the increase of the size and height of rockfall, the total energy of rock slope is also increasing, and the possibility and degree of rock slope sliding are higher. This shows that the improved particle swarm optimization algorithm can effectively analyze some factors affecting slope slip in numerical simulation of saturated rock slope slip.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2707-2715
Author(s):  
Qizhong Li ◽  
Yizheng Yue ◽  
Zhongqi Wang

In order to improve the stability and sensitivity of particle swarm optimization (PSO) algorithm and to solve the problem of premature convergence, in this re-search, a computer PSO algorithm based on thermodynamic motion mechanism is proposed based on the principle of thermodynamic motion mechanism. Firstly, the thermodynamic motion phenomenon, the diffusion law in kinematics and the standard PSO algorithm are introduced. Then, according to the basic idea of thermodynamic motion mechanism, the standardized PSO algorithm is optimized and its optimization process is introduced. Finally, the experimental results are analysed by setting the test function. The results show that among the five test functions, the computer PSO algorithm based on thermodynamic motion mechanism has a higher probability of jumping out of the local optimal solution. Its robustness and stability are much better than standard PSO algorithms. The evolution ability of the computer PSO algorithm based on thermodynamic motion mechanism is better than that of the standard PSO algorithm. The standard PSO algorithm is superior because it is based on thermodynamic motion mechanism. The research in this paper can provide good guidance for improving the performance of PSO algorithm.


2021 ◽  
Vol 256 ◽  
pp. 01007
Author(s):  
Can Su ◽  
Hao Zhou ◽  
Peng Yan ◽  
Liang Meng ◽  
Ziwei Cheng

The feasibility of battery energy storage system (BESS) in ameliorating power system transient stability has been proved. However, the required BESS capacity is large, which leads to high price. Meanwhile, the improving effect is significantly affected by fault location and BESS location. To address the problem, a distributed configuration of BESS, with a coordinated control method, is proposed in this paper. Firstly, an independent double-closed loop decoupling controller is designed for each BESS, so that the BESS unit can realize decentralized control according to its local correlation information. Secondly, particle swarm optimization is applied to optimize the control parameters of the distributed controllers to achieve coordinated control. Simulation results show that the distributed BESS controllers optimized by particle swarm optimization can better coordinate with each other, and the transient stability of the system is significantly improved.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2868
Author(s):  
Gong Cheng ◽  
Huangfu Wei

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


2021 ◽  
Vol 13 (6) ◽  
pp. 1207
Author(s):  
Junfei Yu ◽  
Jingwen Li ◽  
Bing Sun ◽  
Yuming Jiang ◽  
Liying Xu

Synthetic aperture radar (SAR) systems are susceptible to radio frequency interference (RFI). The existence of RFI will cause serious degradation of SAR image quality and a huge risk of target misjudgment, which makes the research on RFI suppression methods receive widespread attention. Since the location of the RFI source is one of the most vital information for achieving RFI spatial filtering, this paper presents a novel location method of multiple independent RFI sources based on direction-of-arrival (DOA) estimation and the non-convex optimization algorithm. It deploys an L-shaped multi-channel array on the SAR system to receive echo signals, and utilizes the two-dimensional estimating signal parameter via rotational invariance techniques (2D-ESPRIT) algorithm to estimate the positional relationship between the RFI source and the SAR system, ultimately combines the DOA estimation results of multiple azimuth time to calculate the geographic location of RFI sources through the particle swarm optimization (PSO) algorithm. Results on simulation experiments prove the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document