scholarly journals Estimation of Runoff Potential by the Application of Curve Number Method in GIS Platform

Estimation of direct runoff is essential for planning and development of watershed. In this study estimation of the same is carried out by applying Soil Conservation Service-Curve Number (SCS-CN) model technique with Geographic Information System (GIS) approach. The SCS-Curve Number model is a hydrological model which is widely used for estimation of runoff volume generated from the rainfall event. The said model mathematically describe the rainfall – runoff relationship and uses rainfall data and Curve Number (CN) as the inputs. The Curve Number is an empirical index depends on the soil complex, land use and hydrological condition of the area. The SCS-CN method with GIS approach has been adopted for predicting the runoff volume in the catchment of upper Mahanadi, which is upstream of the confluence of Mahanadi and Pairi River. The catchment area under consideration is 8086 sq.km. The study area climate condition is tropical monsoon type which receives the normal annual rainfall of 1360 mm. The maximum precipitation about 86% of the total precipitation, observed in the monsoon period from July to Mid of September. Survey of India (SOI) topographic sheets and Indian Remote Sensing satellite image LISS-III were used to prepare thematic maps of the study area. Thematic maps and hydrological data were used to generate Curve Number map and Hydrological Soil Group map. The SCS-CN method is very useful to compute runoff volume from the land, which quatify the direct drain to the river or streams. The outcome of this study is useful for watershed planning and development effectively for the study area.

2014 ◽  
Vol 6 (3) ◽  
Author(s):  
Costache Romulus ◽  
Fontanine Iulia ◽  
Corodescu Ema

AbstractSǎrǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in Sǎrǎţel catchment, between 1990–2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.


2021 ◽  
Vol 10 (1) ◽  
pp. 318
Author(s):  
Sayran A. Ibrahim ◽  
Zahraa M. Klari

In any hydrologic study, the most important parameter is the runoff which is necessary for designing any hydraulic structure, and for determining the risk of flood. As there is a scare in the availability of runoff data in many sites, hydrologists have developed indirect methods to determine the runoff to accelerate the program of watershed management for conserving and developing water resources management. Many methods are used to estimate the runoff; Soil conservation curve number (SCS-CN) method is widely used and gives a reliable result compared with other methods. The present study aims to calculate the surface runoff depth depending on the SCS-CN method using a Geographic information system (GIS). For this Gali-Bandawa watershed in Duhok, north of Iraq has been selected, the geographical area of this watershed is about 92Km2 and the average annual rainfall is around 620mm, the weighted CN is 76. The results show that the depth of annual average runoff for the Gali-Bandawa watershed is 70mm, and the average volume of runoff from the same watershed is 6470360 m3. The amount of runoff represents 11.4% of the total annual rainfall. This approach could be applied in other Iraqi's watersheds for the planning of various conservation measures.


2015 ◽  
Vol 19 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Viji Raja

<p>Divination and determination of catchment surface runoff are the most important contestable process of hydrology. Soil Conservation Service - Curve Number (SCS – CN) method is employed to estimate the runoff. It is one of the physical based and spatially distributed hydrological models. In this model, the curve number is a primary factor used for runoff calculation. The selection of curve number is based on the land use pattern and HSG (Hydrological Soil Group) present in the study area. Since the spatial distribution of CN estimation by the conventional way is very difficult and time consuming, the GIS (Geographic Information System) based CN method is generated for Kundapallam watershed. With the combination of land use and HSG the estimated composite CN for AMC (Antecedent Moisture Condition) I, AMC II and AMC III for the entire watershed was about 48, 68 and 83 respectively. The average annual runoff depth estimated by SCS-CN method for the average annual rainfall of 173.5 mm was found to be 72.5 mm. The obtained results were comparable to measured runoff in the watershed.</p><p> </p><p><strong>Resumen</strong></p>La predicción y la determinación del caudal de escorrentía de una cuenca son procesos de amplio debate en la hidrología. El método coeficiente de escurrimiento, del Servicio de Conservación de Suelos (SCS-CN, inglés) fue utilizado en este trabajo para estimar la escorrentía. Este es uno de los modelos hidrológicos basados en conceptos físicos y distribución espacial. En este modelo el coeficiente de escurrimiento es un factor de relevancia para el cálculo de la escorrentía. La selección del coeficiente de escurrimiento está basada en los patrones del uso de la tierra y del Grupo de Suelos Hidrológicos (HSG, inglés) relativos a esta área de estudio. Debido a que la estimación del coeficiente de escurrimiento en la distribución espacial es compleja, para la cuenca Kundapallam se implementó un método a partir de un Sistema de Información Geográfica (GIS, inglés), y basado en el coeficiente de escurrimiento. Con la combinación del uso de suelos y el HSG, la estimación compuesta del coeficiente de escurrimiento para el Antecedente de Condición de Humedad AMCI, AMCII y AMCIII para toda la cuenca fue de 48, 68 y 83. El promedio anual de escorrentía profunda estimada por el método SCS-CN con una media anual de lluvia de 173,5 mm fue de 72,5 mm. Los resultados fueron comparados con la escorrentía medida en la cuenca.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 704
Author(s):  
Hussein Al-Ghobari ◽  
Ahmed Z. Dewidar

An increasing scarcity of water, as well as rapid global climate change, requires more effective water conservation alternatives. One promising alternative is rainwater harvesting (RWH). Nevertheless, the evaluation of RWH potential together with the selection of appropriate sites for RWH structures is significantly difficult for the water managers. This study deals with this difficulty by identifying RWH potential areas and sites for RWH structures utilizing geospatial and multi-criteria decision analysis (MCDA) techniques. The conventional data and remote sensing data were employed to set up needed thematic layers using ArcGIS software. The soil conservation service curve number (SCS-CN) method was used to determine surface runoff, centered on which yearly runoff potential map was produced in the ArcGIS environment. Thematic layers such as drainage density, slope, land use/cover, and runoff were allotted appropriate weights to produced RWH potential areas and zones appropriate for RWH structures maps of the study location. Results analysis revealed that the outcomes of the spatial allocation of yearly surface runoff depth ranging from 83 to 295 mm. Moreover, RWH potential areas results showed that the study areas can be categorized into three RWH potential areas: (a) low suitability, (b) medium suitability, and (c) high suitability. Nearly 40% of the watershed zone falls within medium and high suitability RWH potential areas. It is deduced that the integrated MCDA and geospatial techniques provide a valuable and formidable resource for the strategizing of RWH within the study zones.


2010 ◽  
Vol 11 (1) ◽  
pp. 26-45 ◽  
Author(s):  
Nityanand Singh ◽  
Ashwini Ranade

Abstract Characteristics of wet spells (WSs) and intervening dry spells (DSs) are extremely useful for water-related sectors. The information takes on greater significance in the wake of global climate change and climate-change scenario projections. The features of 40 parameters of the rainfall time distribution as well as their extremes have been studied for two wet and dry spells for 19 subregions across India using gridded daily rainfall available on 1° latitude × 1° longitude spatial resolution for the period 1951–2007. In a low-frequency-mode, intra-annual rainfall variation, WS (DS) is identified as a “continuous period with daily rainfall equal to or greater than (less than) daily mean rainfall (DMR) of climatological monsoon period over the area of interest.” The DMR shows significant spatial variation from 2.6 mm day−1 over the extreme southeast peninsula (ESEP) to 20.2 mm day−1 over the southern-central west coast (SCWC). Climatologically, the number of WSs (DSs) decreases from 11 (10) over the extreme south peninsula to 4 (3) over northwestern India as a result of a decrease in tropical and oceanic influences. The total duration of WSs (DSs) decreases from 101 (173) to 45 (29) days, and the duration of individual WS (DS) from 12 (18) to 7 (11) days following similar spatial patterns. Broadly, the total rainfall of wet and dry spells, and rainfall amount and rainfall intensity of actual and extreme wet and dry spells, are high over orographic regions and low over the peninsula, Indo-Gangetic plains, and northwest dry province. The rainfall due to WSs (DSs) contributes ∼68% (∼17%) to the respective annual total. The start of the first wet spell is earlier (19 March) over ESEP and later (22 June) over northwestern India, and the end of the last wet spell occurs in reverse, that is, earlier (12 September) from northwestern India and later (16 December) from ESEP. In recent years/decades, actual and extreme WSs are slightly shorter and their rainfall intensity higher over a majority of the subregions, whereas actual and extreme DSs are slightly (not significantly) longer and their rainfall intensity weaker. There is a tendency for the first WS to start approximately six days earlier across the country and the last WS to end approximately two days earlier, giving rise to longer duration of rainfall activities by approximately four days. However, a spatially coherent, robust, long-term trend (1951–2007) is not seen in any of the 40 WS/DS parameters examined in the present study.


2017 ◽  
Vol 10 (2) ◽  
pp. 233-241
Author(s):  
Franciane Mendonça Dos Santos ◽  
José Augusto Lollo

This study was developed at Caçula stream watershed of Ilha Solteira (Brazil) for potential infiltration estimation based on digital cartography. These methods aim at low-cost and quick analysis processes in order to support the territorial planning. The preliminary potential infiltration chart was produced using ArcHydro and pedological information of the study area. The curve-number method (Soil Conservation Service) was used to determine the potential infiltration combining information related to land-use and soil types in the watershed. We also used a methodology that assumes being possible to evaluate potential infiltration of a watershed combining average annual rainfall, land-use and watershed natural attributes (geomorphology, geology and pedology). Results show that ArcHydro is efficient for a preliminary characterization because it shows flow accumulation areas, allowing higher potential of degradation areas in terms of floods, mass movement and erosion. As land-use classes have significant weight in Soil Conservation Service method assessing potential infiltration, this method allow us to evaluate how land-use changes affect water dynamic in the watershed. The propose based on natural environment attributes enables to determine the homologous infiltration areas based on a higher number of natural characteristics of the area, and thereby obtain a result that is closer to the local conditions and, consequently for degradation surface processes identification.


Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 150
Author(s):  
Manuel Esteban Lucas-Borja ◽  
Giuseppe Bombino ◽  
Bruno Gianmarco Carrà ◽  
Daniela D’Agostino ◽  
Pietro Denisi ◽  
...  

The use of the Soil Conservation Service-curve number (SCS-CN) model for runoff predictions after rainstorms in fire-affected forests in the Mediterranean climate is quite scarce and limited to the watershed scale. To validate the applicability of this model in this environment, this study has evaluated the runoff prediction capacity of the SCS-CN model after storms at the plot scale in two pine forests of Central-Eastern Spain, affected by wildfire (with or without straw mulching) or prescribed fire and in unburned soils. The model performance has been compared to the predictions of linear regression equations between rainfall depth and runoff volume. The runoff volume was simulated with reliability by the linear regression only for the unburned soil (coefficient of Nash and Sutcliffe E = 0.73–0.89). Conversely, the SCS-CN model was more accurate for burned soils (E = 0.81–0.97), also when mulching was applied (E = 0.96). The performance of this model was very satisfactory in predicting the maximum runoff. Very low values of CNs and initial abstraction were required to predict the particular hydrology of the experimental areas. Moreover, the post-fire hydrological “window-of-disturbance” could be reproduced only by increasing the CN for the storms immediately after the wildfire. This study indicates that, in Mediterranean forests subject to the fire risk, the simple linear equations are feasible to predict runoff after low-intensity storms, while the SCS-CN model is advisable when runoff predictions are needed to control the flooding risk.


Sign in / Sign up

Export Citation Format

Share Document