scholarly journals Heat Transfer using Nanofluid

Latest trend of miniaturization of thermal systems, calls for the improvement in their efficiency. Nanofluid contains the nanoparticles having large surface area and improves the thermal efficiency. This enhancement is the function of different mechanisms and parameter. This paper explores the heat transfer nature of nanofluids by addressing the experimental studies available in literature and conducting an experimental study using water based Copper oxide nanofluids. Nanoparticles were characterized by X-ray diffraction analysis and Field Emission Scanning Electron Microscopy to confirm the material, size and morphology of the nanoparticles. Thermal conductivity analysis has been performed at 30˚C, 40˚Cand 50˚C with 0.1%,0.5% and 1% concentration by weight. Mechanism of agglomeration, concentration and size of particles are found to be more significant in affecting the heat transfer. The maximum enhancement of 22.9 % in thermal conductivity is found in case of 1% weight concentration nanofluids consisting of small size (20nm) nanoparticles at temperature of 50˚C.

Author(s):  
Jodh Singh ◽  
◽  
Munish Gupta ◽  
Rajesh Kumar ◽  
Harmesh Kumar ◽  
...  

Latest trend of miniaturization of thermal systems, calls for the improvement in their efficiency. Nanofluid contains the nanoparticles having large surface area and improves the thermal efficiency. This enhancement is the function of different mechanisms and parameter. This paper explores the heat transfer nature of nanofluids by addressing the experimental studies available in literature and conducting an experimental study using water based Copper oxide nanofluids. Nanoparticles were characterized by X-ray diffraction analysis and Field Emission Scanning Electron Microscopy to confirm the material, size and morphology of the nanoparticles. Thermal conductivity analysis has been performed at 30˚C, 40˚Cand 50˚C with 0.1%,0.5% and 1% concentration by weight. Mechanism of agglomeration, concentration and size of particles are found to be more significant in affecting the heat transfer. The maximum enhancement of 22.9 % in thermal conductivity is found in case of 1% weight concentration nanofluids consisting of small size (20nm) nanoparticles at temperature of 50˚C.


2020 ◽  
Vol 70 (338) ◽  
pp. 215 ◽  
Author(s):  
G. Thalmaier ◽  
N. Cobîrzan ◽  
A. A. Balog ◽  
H. Constantinescu ◽  
M. Streza ◽  
...  

This study investigates the effect of adding different size fractions of the same pore forming agent (sawdust) on the material’s compressive strength and heat transfer. The samples were dry pressed and fired at high temperature inside an oven. Phase transformations were evidenced by a combination of differential thermal analysis, thermogravimetry and mass spectrometry (DTA-TGA-MS) and X-ray diffraction (XRD) techniques, in the temperature range of 24-900 ºC. Image analysis (IA) and compression tests were performed to explain the mechanical behaviour of the samples. The thermal conductivity was obtained by using combined photopyroelectric calorimetry (PPE) and lock-in thermography (LIT) techniques. The pressing direction has an impact on the distribution of pores and the heat transfer by conduction.


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


Author(s):  
Amit Gupta ◽  
Xuan Wu ◽  
Ranganathan Kumar

This study discusses the merits of various physical mechanisms that are responsible for enhancing the heat transfer in nanofluids. Experimental studies have cemented the claim that ‘seeding’ liquids with nanoparticles can increase the thermal conductivity of the nanofluid by up to 40% for metallic and oxide nanoparticles dispersed in a base liquid. Experiments have also shown that the rise in conductivity of the nanofluid is highly dependent on the size and concentration of the nanoparticles. On the theoretical side, traditional models like Maxwell or Hamilton-Crosser models cannot explain this unusually high heat transfer. Several mechanisms have been postulated in the literature such as Brownian motion, thermal diffusion in nanoparticles and thermal interaction of nanoparticles with the surrounding fluid, the formation of an ordered liquid layer on the surface of the nanoparticle and microconvection. This study concentrates on 3 possible mechanisms: Brownian dynamics, microconvection and lattice vibration of nanoparticles in the fluid. By considering two nanofluids, copper particles dispersed in ethylene glycol, and silica in water, it is determined that translational Brownian motion of the nanoparticles, presence of an interparticle potential and the microconvection heat transfer are mechanisms that play only a smaller role in the enhancement of thermal conductivity. On the other hand, the lattice vibrations, determined by molecular dynamics simulations show a great deal of promise in increasing the thermal conductivity by as much as 23%. In a simplistic sense, the lattice vibration can be regarded as a means to simulate the phononic transport from solid to liquid at the interface.


2018 ◽  
Vol 916 ◽  
pp. 221-225
Author(s):  
Ji Zu Lv ◽  
Liang Yu Li ◽  
Cheng Zhi Hu ◽  
Min Li Bai ◽  
Sheng Nan Chang ◽  
...  

Nanofluids is an innovative study of nanotechnology applied to the traditional field of thermal engineering. It refers to the metal or non-metallic nanopowder was dispersed into water, alcohol, oil and other traditional heat transfer medium, to prepared as a new heat transfer medium with high thermal conductivity. The role of nanofluids in strengthening heat transfer has been confirmed by a large number of experimental studies. Its heat transfer mechanism is mainly divided into two aspects. On the one hand, the addition of nanoparticles enhances the thermal conductivity. On the other hand, due to the interaction between the nanoparticles and base fluid causing the changes in the flow characteristics, which is also the main factor affecting the heat transfer of nanofluids. Therefore, a intensive study on the flow characteristics of nanofluids will make the study of heat transfer more meaningful. In this experiment, the flow characteristics of SiO2-water nanofluids in two-dimensional backward step flow are quantitatively studied by PIV. The results show that under the same Reynolds number, the turbulence of nanofluids is larger than that of pure water. With the increase of nanofluids volume fraction, the flow characteristics are constantly changing. The quantitative analysis proved that the nanofluids disturbance was enhanced compared with the base liquid, which resulting in the heat transfer enhancement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tawfeeq Abdullah Alkanhal

Purpose This paper aims to disperse the silicon dioxide in water (as the mono nanofluid [MN]) and then, carbon nanotube (CNT)-silica composite in water (as the hybrid nanofluid [HN]). Design/methodology/approach Nanofluids have gained lots of attention through the recent years. Due to their usage in the industries and also medical applications, they have high protentional to be studied in different aspects. The most common study for the nanofluids is to understand the heat transfer capacity for each material in each fluid. These material(s) or fluid(s) can be one (mono nanofluid) or more than one (hybrid nanofluid). Findings The mixture of two solids is to assess the unique properties of each material and also to decrease the cost of experiments. The heat transfers for both MN and HN were measured at volume fractions up to 1.0%, and temperatures up to 50°C. Also, the heat transfers were compared. By more CNT, thermal conductivity was enhanced about 17.39% (from 12.42% of MN to 29.81% of HN). Originality/value X-Ray diffraction and field emission scanning electron microscope (FESEM) were examined for mono solids and the composite. After the experimental study, for MN and HN, four novel correlations calculated.


MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


Author(s):  
Anwar Ilmar RAMADHAN ◽  
Wan Hamzah AZMI ◽  
Rizalman MAMAT

In recent years, research has focused on enhancing the thermo-physical properties of a single component nanofluid. Therefore, hybrid or composite nanofluids have been developed to improve heat transfer performance. The thermo-physical properties of the Al2O3-TiO2-SiO2 nanoparticles suspended in a base of water (W) and ethylene glycol (EG) at constant volume ratio of 60:40 and different volume concentrations were investigated. The experiment was conducted for the volume concentrations of 0.05, 0.1, 0.2, and 0.3% of Al2O3-TiO2-SiO2 nanofluids at different temperatures of 30, 40, 50, 60, and 70 °C. Thermal conductivity and dynamic viscosity measurements were carried out at temperatures ranging from 30 to 70 °C by using KD2 Pro Thermal Properties Analyzer and Brookfield LVDV III Ultra Rheometer, respectively. The highest thermal conductivity for tri-hybrid nanofluids was obtained at 0.3% volume concentration, and the maximum enhancement was increased up to 9% higher than the base fluid (EG/W). Tri-hybrid nanofluids with a volume concentration of 0.05% gave the lowest effective thermal conductivity of 4.8 % at 70 °C temperature. Meanwhile, the dynamic viscosity of the tri-hybrid nanofluids was influenced by volume concentration and temperature. Furthermore, tri-hybrid nanofluids behaved as a Newtonian fluid for volume concentrations from 0.05 to 3.0%. The properties enhancement ratio (PER) estimated that the tri-hybrid nanofluids will aid in heat transfer for all samples in the present. The new correlations for thermal conductivity and dynamic viscosity of tri-hybrid nanofluids were developed with minimum deviation. As a conclusion, the combination of the enhancement in thermal conductivity and dynamic viscosity for tri-hybrid at 0.3% volume concentration was found the optimum condition with more advantage for heat transfer than other concentrations.


Author(s):  
Adolfo Quiroz-Rodríguez ◽  
Cesia Guarneros-Aguilar ◽  
Ricardo Agustin-Serrano

In this research, it is presented a detailed study of the structural and thermoelectric properties of the pyrochlore zirconium Pr2Zr2O7 compound prepared by solid-state reaction (SSR) in air at ambient pressure. The synthesized sample was characterized using powder X-ray diffraction. The thermal stability of the thermoelectric compound (TE) Pr2Zr2O7 was tested by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Scanning electron microscopy shows that the crystal size varies between 0.69 and 2.81μm. Electrical conductivity (\sigma) of the sample calcined at 1400 °C presented values increase irregularly with the increasing temperature from 0.001 to 0.018 S cm-1 as expected in a semiconductor material. The thermal conductivity is lower than 0.44 - 775 W m-1 K-1 which is quite anomalous in comparison with the thermal conductivity of other oxides.


2012 ◽  
Vol 198-199 ◽  
pp. 99-102
Author(s):  
Qing Gang Kong ◽  
Hai Yan Qian

Magnesium nitrate was used as additive for synthesis of Mg(OH)2 (MH) nanoparticles at low temperature (70°C). Mg(OH)2 nanoparticles have platelet-like structure and approximately 40-60nm in thicknesses. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the crystal phase. The supersaturation degree of solution effects the size and morphology of MH nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document